
Keynote address for Third International Conference on Software Reusability, November 1-4 1994, Rio de Janeiro, Brazil.
Proceedings to appear IEEE Press.

An Assessment of Reuse Technology after Ten Years

James M. Neighbors

SADA, 3482 Wimbledon Way, Costa Mesa, CA 92626, USA
neighbrs@netcom.com

Abstract
More than ten years ago the first major workshop

on "Reusability in Programming" was held. Since that
time some technologies have advanced and come into
successful commercial use while others have gone
unused. New management and abstraction techniques
have aided reuse. Interfacing to huge abstractions, now
in common use, has made reuse more difficult. This paper
is not a formal survey of reuse technology but instead
discusses the evolution of early concepts and the issues
they raise. Much of the research of the original workshop
participants is just now becoming relevant. In some cases
the research of the past points to problems and solutions
for the present. As part of this examination the activities
in reuse for the next ten years will be forecast and a
guide of hard questions to ask purveyors of reuse
technology will be provided.

Key words and phrases: domain analysis, software
architecture, software reuse, configuration space, version
space, refinement, software component, software process,
glue code.

1. Introduction

The research on software construction from
component parts began shortly after it's suggestion by
McIlroy [16] at the 1968 NATO conference founding
Software Engineering. In the 1970's Software
Engineering (SE) research primarily focused on the
difficulties of developing systems in the traditional way of
new development within large groups. Some early work
within Software Engineering [9] attempted to construct
systems from large software parts without modification.
The resulting systems were brittle and the attempt was
abandoned. The Artificial Intelligence (AI) area of
automatic programming [2] in the 1970's provided
valuable schemes for creating and using abstractions from
knowledge bases. The difficulty AI researchers faced was
determining what abstraction concepts are useful for the
task of programming. SE was struggling to produce that

knowledge. By 1980 it was clear that SE and AI were on a
collision course in their research paths. The first major
workshop on "Reusability in Programming" [21] was held
in 1983. As with all strong areas of research the papers
show a mix of ideas from different areas. Software
Engineering, Artificial Intelligence, and Formal Theory
are all represented.

In the intervening ten years there have been
surprises. Some technologies such as software libraries
and domain analysis have advanced and come into
successful commercial use. Other technologies such as
transformational implementation and formal theory
specification have gone unused. New management
techniques (software process and making reuse happen)
and new abstraction techniques (packages and objects)
have advanced reuse. Huge abstractions have come into
common use (graphical user interfaces, databases,
networking, multitasking) that complicate reuse which
must interface to these abstractions. As expected, it has
been shown that reuse enables an organization to build a
new version of a system with less effort. This reduces the
organization's software development costs. It has also
been realized that reuse enables an organization to build a
completely new system with less effort. This shortens the
organization's time to market and enables the
organization to address new markets [13]. This paper
primarily focuses on technical tools and techniques rather
than management which is co-dependent and equally
important.

After ten years of workshops on Software
Reusability this is the first conference on the topic. This is
an advertisement that Software Reusability has something
to offer not only researchers in the area but also
practitioners who build commercial software. This paper
is not intended as an exhaustive survey of the literature of
Software Reusability. There are many good surveys
available [6, 11, 12, 25, 26]. Instead I will try to provide a
guide to the concepts that have shaped the area, pointing
out parts still under construction and parts ready for
commercial use. Finally, I will present a set of questions

so that practitioners and researchers can determine for
themselves whether of not a technique is mature.

As a structure for this discussion I will use the basic
reuse cycle process of Biggerstaff and Richter [5]:
Abstraction / Selection / Specialization / Integration.
Abstraction in this context is how parts are identified,
classified, and interrelated. Selection is how a part is
found for reuse. Specialization is how a part may be
customized for use in a specific instance. Integration is
how a part is composed with other parts in a specific
instance.

2. Code libraries: a first step

In general I shall use the term library to be
interchangeable with repository and knowledge-base.
Repository usually infers that historic and ancillary
organization information is kept with the parts to be
reused. Knowledge-base usually infers that
interconnection information is kept between the parts to
be reused. I see these as features that all libraries have to
different degrees.

The most obvious approach to the problem of
software reuse is to form libraries of software modules,
but when we consider the reuse of existing programs we
must be careful in describing the goals of the reuse. In
black-box reuse a programmer is looking for a program
part that can be "plugged in" without modification. In
white-box reuse the programmer is looking for a program
part that can be modified before use. This is an important
consideration in the design of a library of reusable
program parts. Black-box reuse libraries need only be
concerned with what the program part does. White-box
reuse libraries must store both what the part does and how
it does it.

Black-box reuse has been successful for many years
as run-time libraries and mathematical libraries. In both
cases the data structures manipulated by the library parts
have either been controlled as with the compiler run-time
libraries or very basic as with the math libraries. White-
box reuse has been successful as collections of algorithms
with detailed descriptions of their operation above the
level of programming language code.

Black-box library systems must overcome two basic
problems of classification and search. The classification
problem of how to describe what each part in the library
does. The search problem of how to find parts in the
library that address your problem. White-box library
systems must overcome two additional problems of
structural specification and flexibility. The structural
specification problem of how to describe how each part in
the library works. The flexibility specification problem of

how to define the decisions inherent in the parts and the
constraints upon the composition of parts.

Related to the issue of white-box or black-box reuse
is the issue of granularity of reuse. Large-grain reuse
implies that the parts stored in the library are usually very
large, perhaps the equivalent of thousands or millions of
lines of code. On the other hand small-grain reuse implies
that the parts are usually very small, perhaps only a few to
a hundred lines of code.

The overall library problem is the conflict between
the goals of reuse and the structure of the library. If the
parts in the library are to be simply reused without
modification (black-box reuse) then they must be large
and somewhat inflexible to support standard interfaces
(large-grain reuse). However, if the individual parts in the
library are large (complex structural and flexibility) then
the number of parts may be small (simple classification
and search).

If the parts in the library are to be modified and
reused (white-box reuse) then they must be small to be
general, flexible, and understandable (small-grain reuse).
However, if the individual parts in the library are small
(simple structural) then the number of parts in a usable
library must be very large (complex classification, search
and flexibility).

Thus the objectives of black-box reuse and white-
box reuse are always in conflict. If a library contains
many small parts, then it lessens the structural
specification and intra-part flexibility problems at the
expense of increasing the inter-part flexibility,
classification and searching problems. If a library
contains a small number of large parts then it lessens the
classification and searching problems at the expense of
increasing the structural specification and flexibility
problems.

In the last ten years a great deal of work has been
done with libraries for black-box reuse [23]. They have
been successfully deployed on commercial projects and
improvements of 15% and higher have been reported
[13]. The lesson here for a practitioner is that if your
organization has not already constructed a library then do
so now. It is a good first step. The technical and
managerial experience is available to make it a success.
As will be discussed later, we have also learned that there
are limits to libraries supporting only the black-box reuse
of program code.

A truly great library must support both white-box
and black-box reuse. At the minimum we must have
black-box reuse for interfaces to parts of the developing
system that the developers have no control over, such as
the huge abstractions of the 1980s GUIs, DBs, OSs, and
networks.

3. What to reuse

Software Engineering has studied the process of
building software for the last twenty-five years. Briefly the
following lifecycle phases and work products are
important. Each phase is annotated with an estimate [8]
of the percentage of the total effort to produce a first
system.
• Requirements (6%) provide the function,

performance, and external constraints on the system.
• Analysis (8%) interrelates the data, function and

external interfaces to ensure that the requirements are
complete and understood.

• Design (29%) casts the understanding of analysis into
an architecture of computer process structures and
details the function of members of the structures.

• Implementation (34%) constructs actual program
code and tests individual codes.

• Testing (23%) checks compositions of codes and
functional performance of the resulting system.

Maintenance is a reiteration of these same activities. All
the phases are accompanied by simulation and
management. Sometimes lifecycle phases are confused
with the basic styles of management given below.
• Waterfall management performs each phase

completely before beginning the next phase.
• Inspection management examines the results of each

phase and falls back one or more phases if there is a
problem.

• Spiral management performs each phase lightly and
then reiterates for a richer system behavior.

The implementation phase consumes the largest
percentage of the effort in building a system. As such it is
a prime candidate for automation. However, consider the
consequences. Using a technique such as reuse to
completely eliminate implementation would mean only a
34% savings in effort. This estimate discounts any extra
effort involved in using the technique. Still, as I have
mentioned before, a potential 34% savings should not be
passed up. The construction of a black-box reuse code
library is well worth the effort.

A library of programming language level parts for
reuse can have a huge impact on implementation but very
little impact on the other phases of the lifecycle. However,
since implementations are derived from designs, designs
from analysis, and analysis from requirements, the
earliest phase information we can store in our library will
have the greatest impact on later phases. This will be
especially true if we provide interconnections to partial
work products of later phases. The problem with this
approach is that the work products of the higher phases
tend to be very specific to the problem domain. All of the
library problems discussed in the earlier section on code

libraries are independent of the work product stored in the
library. Thus a library that stores analysis, design, and
code information inherits all the problems of a simple
code library.

4. Using the library

Typically one thinks of the components of a library
as perhaps related but not explicitly connected. Like a
book library, each component is expected to stand on it's
own. The abstraction took place when the author placed
the content into a container (book) and then specified the
content to a separate content description scheme (catalog).
A problem with this scheme is that it places the full
burden of using the library on each individual user of the
library. In the basic cycle of reuse this means that the
author performs the abstraction step while each and every
user performs the selection, specialization and integration
steps. Obviously if we could provide a scheme where
some of this burden were shifted back to the author /
abstractor then it would have a significant impact. I will
discuss approaches to this in the section on domain-
specific knowledge.

Once a user has selected two reusable parts - either
code or a higher phase work product - then it is left to
each user to make these two parts work together.
Integration in this context is composition of the two
components. One approach to this is to write or synthesize
glue code. Glue code transforms the abstractions of each
component and results in compatibility. It does this by
forming a model of compatibility, implementing it, and
embedding the components to be interfaced. Once again
each user of the library must do this.

As a large system is constructed from reusable parts
embedded in layer upon layer of glue code, it becomes
hard to see the components for the glue [7]. In some cases
the abstractions may just not be compatible by any amount
of glue [4]. Ultimately glue is most of the system code.
Since glue is custom to each user of the library, not much
has be gained by reuse.

Current very large hand-written systems contain
huge amounts of glue. Glue accumulates through the
process of maintenance. Consider what "glue" actually is -
an abstraction created to bind together two separate
abstractions. Maintenance programmers on a large system
will avoid modifying glue sections because they bridge
two abstractions. The possibility of introducing an error
with a maintenance change to glue is high because the
content coupling is very high. Maintenance programmers
will tend isolate their changes by surrounding them with
complex predicates to limit the impact of the change to
the system function. These predicates are just more glue.
Consider what a system looks like after 10 years of this

kind of maintenance. Ultimately huge sections of the code
are dead, even though they are strongly connected,
because the conjunction of maintenance predicates to
reach much of the code is never true. There is always
some glue, but it should not be the basis of construction.

5. Domain-specific knowledge

One approach to easing the selection and integration
problems is to be problem domain specific. In this
approach the library uses the existence of problem
domains as an organizational scheme. The work of Batory
et al. on database system generation is a nice example [3].
The knowledge about database generation could have
been presented in three basic ways.
1. A library full of components for all kinds of domains

- e.g., graphics, networking, database. You find the
components you need to put together a database and
write glue to compose them.

2. A library full of database components. You find
them. You figure out how they fit together. You
compose them.

3. A library full of components, some of which are
database components. The library also contains
interconnections between the components that
provides an architecture or template for how to fit the
components together to form a database. You fill in
the architecture with your selections.

Clearly for users the third form of library is preferable.
The selection and integration effort are guided by
information added by the author at abstraction time.
Specialization guidance can also be added. This requires
the abstract creator to analyze the problem domain, which
is called domain analysis. The abstract creators job
becomes much harder. Domain analysis differs from
classical system analysis in that an entire family of
systems and solutions must be considered. It has been
intensively studied in the last ten years [1, 24]. The
process of domain analysis is useful for an organization
even if it is not used in a reuse scheme. It characterizes
the kinds of systems the organization builds and that in
itself is a valuable educational tool.

Briefly an approach to domain analysis is as follows:
1. Analyze four or more existing systems in the

domain using classical systems analysis [17].
2. Form an analysis model of the union of features of

existing systems.
3. Determine and, or, not, existential and universal

constraints on acceptable domain feature variations.
4. Present model and variation constraints to domain

experts for approval.

5. Continue 1 through 4 until all systems in 1 are
variants of model 2 under constraints 3 and
approval 4.

6. Provide function implementations under allowed
variations.

The topic is much more complex than this; examine the
Prieto-Diaz and Arango tutorial [24] for a detailed
discussion.

In the brief discussion above I was not very precise
as to the specific result of domain analysis. The work
product of domain analysis is not well defined because
there are many approaches to using domain-specific
knowledge. Some system specification techniques using
domain knowledge are given below.
• Domain languages [19] constrain system descriptions

to legal statements in an ad hoc source form
language.

• Domain algebra [28] constrain system descriptions to
legal statements in a high-level formal algebra.

• Domain-specific software architectures [15]
constrain system descriptions to a single architecture
template to be elaborated with detail.

• Domain-specific kits [13] provide components,
frameworks, glue languages, generic applications,
and tools.

The existence of the work products above and those from
early lifecycle phases are stretching our use of the term
library for where we keep all this information [13].

6. Abstraction and refinement

The act of analyzing and abstracting a problem
domain explicitly connects library components. As
discussed earlier, these components may be code,
immutable black-box interface specifications, and high-
level domain-specific specifications. Our simple code
library is beginning to look like a complex knowledge
base. As with a simple code library where the user needs
help finding a component, the user of a knowledge base
needs help to navigate through all the possible system
solutions.

For each component in a given library I make the
following definitions.
• level of abstraction (LOA) - on a per component basis

is the minimum number of decisions to reach any
compilable state by a commercial tool.

• level of refinement (LOR) - on a per component basis
is the number of decisions that have been made to
arrive at this component.
Domain-specific interconnections may cause

decisions on one component to constrain components to
which it is connected. Thus one decision may increase or
decrease the level of abstraction for a collection of

connected components. Refinement is the process of
making these implementation decisions. There are two
basic approaches to refinement. A component can refine
directly to code (LOA = 0) or it can refine to one or more
connected components that require further refinement
(LOA > 0).

As refinement of a complete system proceeds from
initial system specification to code the following effects
are found [18].

number
of

components

initial spec code

Figure 1. Components vs. average LOR

average LOR

In general, the refinement of higher LOA components
produces more lower LOA components (Fig. 1). These
lower LOA components must be further refined until they
are all code components (Fig 2.).

initial spec code

average
level of

abstraction
of a component

Figure 2. average LOA vs. average LOR

average LOR

Using the definition of LOA as decisions to be made and
the general shapes of Figures 1 and 2, the number of
decisions pending can be estimated (Fig. 3).

initial spec code

average
number of
decisions
pending

synthesizer

generator

4GL

Figure 3. Decisions vs. average LOR

average LOR

The peak in the center of Figure 3 is the intermediate
modeling swell. Initially the number of decisions grows
rapidly as refinement implementation decisions are made.

The number of decisions then falls off rapidly as
previously made decisions severely constrain later
choices. The actual shape of Figure 3 is not as important
as the idea that in some cases there is a large space of
decisions and constraints to navigate.

The family of curves shown in Figure 3 represents
the complexity of the refinement. Each curve is annotated
with a class of refinement mechanism capable of
navigating the decision space. 4GLs have the lowest
curves, program generators the next highest, and
program synthesizers the highest.

It is important to recognize that power to handle
complex refinements does not infer the power to construct
powerful systems. The converse is also true. Simple
refinement mechanisms are capable of building powerful
systems. A powerful refinement mechanism simply
provides for richer system variations and higher LOA
components. Macro expansion can serve as the refinement
mechanism for program generators. AI problem solving
and theorem proving is used as the refinement mechanism
for program synthesizers. The AI problem solving is
necessary to navigate through the large space of pending
decisions and their interactions.

7. Structural architecture from refinement

In the above exposition the ultimate destination of
refinement is "code". This is a bit simple since large
systems are not simply made of "code".

During refinement there are two major forces at
work. One force, stepwise refinement [30], wants to
further divide each component into collections of mostly
lower level components. Division serves to better define
the function of the original component and provides the
functional architecture of the developing system by
elaborating what function the system performs. Stepwise
refinement is analogous to the basic AI problem solving
method of divide and conquer.

The other force, structural encapsulation, wants to
encapsulate the concept embodied by the component in a
structure that will be visible in the resulting code. The
creation of a named callable routine is an example. The
body of a routine can always be instantiated on its
arguments and inserted inline for the call. For reasons
having little to do with the specific problem domain at
hand, structural encapsulations are performed for clarity
and/or efficiency. These encapsulations establish the
structural architecture of the system. In Software
Engineering this force is roughly analogous to creating
systems from layers of virtual machines [10]. In AI this is
similar to the set-of-support strategy. The decision as to
which force prevails in a certain case is maximal
"information hiding" [20]. This concept is further

resolved to minimizing coupling and maximizing
cohesion.

The dynamic between functional architecture and
structural architecture is nothing new. As with building
architecture, Louis Henry Sullivan's declaration "outward
form ever follows function" [29] advocates functional
decomposition. R. Buckminster Fuller's Dymaxion
principle [14] states that architectural designs should
stress deriving maximum output from minimum material
and energy. This can be taken as a scheme of maximum
structural concept encapsulation. His geodesic dome
design of only hexagons and pentagons epitomizes this
approach. Note that these forces are not always in
opposition. In many cases they are in support of each
other. The same is true of the functional and structural
architectures of information systems. Object-oriented
technology has had a high impact because it strongly
supports both functional and structural architecture.

As a system is maintained and upgraded changes
occur to both the functional and structural architecture.
Changes in the functional architecture create new entries
in the version space of a system. These typically include
adding more functional features to the system. Changes in
the structural architecture create new entries in the
configuration space of the system. These typically include
adding support for new compiler, hardware and operating
environments. All concrete actual systems are an entry in
the version by configuration space. As an example, the
system might be Microsoft Word; the version might be
v2.0; and the configuration might be for Microsoft
Windows v3.11 using Microsoft C v6.0. Configuration
management attempts to manage this space.

Let us consider the structural architecture
refinement possibilities for a very simple functional
architecture: a sine routine that takes a number in radians
and returns a number between 0 and 1. This simple
functional architecture serves to focus our attention on the
structural architecture. Some legitimate structural
refinements include:
1. Encapsulate sine as a system global function with

passed read-only argument parameter and return
value on the stack. Provide functional call
mechanism and naming as resources. Use existing
sine function if compatible otherwise recursively
represent sine as function to be constructed. Annotate
module interconnection language (MIL) [22] to
indicate required access to the function. Add created
function to construction dependency list for the
current component.

2. Encapsulate radian as an object and derive sine as a
method. Provide object mechanism and object
naming. Use existing object type and method if
available, otherwise recursively represent sine as

method to be constructed. Modify MIL and
dependency list as above.

3. Expand sine function semantics inline. Provide sine
semantics, local variable allocation and naming. No
MIL or dependency list modification necessary.

4. Encapsulate sine as a table interpolation function
given table and radian value, return sine value on the
stack

5. Encapsulate table interpolation function to use in-
memory tables computed at system start and
destroyed at system finish

6. Expand table interpolation function inline to use in-
memory tables loaded from a file at system start and
destroyed at system finish. Provide connection to
system start and finish chains, memory allocation,
file operations, location of files at runtime. Annotate
MIL to require construction of file at system
construction time. Add file to system distribution.

The goal here is not to create a complete list but to
establish that the list is rich. All of the above schemes use
actual programming language code. Some schemes, like
threaded code and threaded code interpreters, can blur
this line even more.

Real systems exhibit these behaviors. Consider
configuration files which most programs use and require
defaults. Configuration files are an example of the last
structural architecture listed above. Consider the
processes assumed and work products created: MILs,
dependency lists, system distribution lists, programs
executed at system creation time, compilations at system
creation time, system execution start, system execution,
system execution finish. These are what real systems are
made of. What manages these with reusable software?
Very little work has been done in this area of developing
structural architectures during refinement.

8. Reuse technology questions

Some basic questions should be asked about a reuse
technology before its adoption. These questions have no
"right" answers but are more a checklist to confirm that
the concepts have been considered by the users and
suppliers of the technology.
Organizational
1. How does this scheme fit into my organization?
2. How is my version space impacted by using this

method?
3. How is my configuration space impacted by using

this method?
4. How is the basic reuse cycle of abstraction,

selection, specialization, and integration
performed?

Specification of a system
1. What is the form of specification?
2. What is the LOA of the starting specification?
3. What is the result of domain analysis?
Refining specification to implementation
1. How is a consistent implementation maintained as

the LOR increases?
2. How does the method / tool support various

functional architectures?
3. How does the method / tool support various

structural architectures?
4. How is specialization performed?
5. How do maintenance programmers maintain?
6. How do I guide refinement to different targets (e.g.,

implementations and simulations)?
Extending the library/knowledge base
1. How is the library/knowledge base extended?
2. How are new subsystem interfaces (e.g., GUIs, DBs,

Networks, OSs) specified?

9. Conclusions and the next 10 years

In the last ten years we have successfully
constructed and used general code libraries. They have
proven to be quite successful. We have also investigated
and used the power of domain-specific knowledge in
various approaches. It has proven to be even more
powerful. These techniques were only of use because the
organizational dynamics were studied and the ability to
make organizational change developed.

Currently the emphasis in reuse has shifted away
from code libraries toward knowledge bases containing
problem domain specific information. The mechanisms
for using these knowledge bases to create systems with
rich functional and structural architectures hasn't been
explored recently. The original "Reusability in
Programming" Proceedings [21] had quite a few papers
on transformational implementation, but not much
progress has been made in this area in the last 10 years. I
would expect a fair amount of research to be done in this
area in the next 10 years. At the same time powerful
commercial systems will be made with refinement
mechanisms much simpler than transformational
implementation.

It is tempting to separate systems by their interfaces
and hypothesize cooperating communities of processes
that co-exist and provide function for one another. We
"plumb" these large autonomous pieces together using
passes, pipes and network protocols. This use looks like a
perfect example of black-box reuse. What happens in the
long run? The same thing that happens when we glue two
program fragments together. In this case the problem is
made worse because the three separate program parts (the

two cooperating software agents and information carrying
agent) all have their own version and configuration
spaces. As each of the separate parts is maintained, a little
bit more glue must be added to maintain compatibility
with the other parts. Thus the glue code itself has a huge
version space. Ultimately we have such large amounts of
glue and such complex version/configuration spaces that
performance degrades and the overall system becomes
bug ridden. We have done this before. This kind of
interconnection is analogous to the proliferation of JCL
interconnections on mainframes in the 1970s. Vendors
sold large-grain software components such as ISAM and
sorts. The software systems became structurally brittle,
functionally inflexible, and very expensive to run. This
would be an expensive mistake to make again. In the
future I would expect reuse method developers to carefully
explain how their method deals with maintenance and the
version/configuration space over time.

All the systems that we build have to be composed
with other complex systems. At a minimum they are
composed with the computing hardware and its compiler.
These complex systems have immutable functional and
structural architectures. Bindings to them must be able to
describe these rich architectures. Refinement mechanisms
must be able to both use these binding descriptions and
create various functional and structural architectures for a
given system specification. A system refinement should
result in much more than just code.

Program construction is much easier than program
understanding, since a program constructor is given a
knowledge base from which to create programs by
navigating a space of possibilities. When the domain-
specific knowledge of many domains is added to that
knowledge base, the range of possibilities becomes
practically unbounded. A program constructor only has to
navigate the given space. A program understanding
system has to recreate the entire space and recognize
program features in it. Similarly component
customization is much easier than composing two
components. A component that refines into two lower
level components provides each user with a space to
navigate. Any glue that must be specified is provided by
the abstractor when the component and its refinement
connections are added to the knowledge base. We cannot
really expect programmers to create glue for domain-
specific components each time they are used. Thus a
scheme of domain-specific specification with knowledge-
based refinement where maintenance is performed by re-
refining is necessary. Much work needs to be done in this
area.

All of the above discussion can be directly applied to
the implementation of organizational systems as opposed
to software systems. As an example, the accumulation of

maintenance glue in software systems is analogous to the
expansion of bureaucracy in organizational systems. The
currently popular "Re-engineering the Organization" is
classical systems analysis applied to existing
organizations to remove glue. Some organizational
domains have been analyzed, such as the software system
factory [27]. Organizational processes and technical
development processes are co-dependent. It is only natural
that in the future we would require the reuse of one kind
of process to reuse the associated other kind of process.

Finally, if we adopt a stance of top-down synthesis
from problem domain-specific knowledge rather than
bottom-up composition of code, then we have achieved a
true breakthrough - we no longer have to generate just
implementation code. We can generate code for different
reasons. We can also generate hardware architectures
using hardware description languages such as VHDL. As
an example, consider a single network protocol
description that can be refined into the following systems:
• Software implementation of the protocol.
• Software simulation of the protocol.
• Software/hardware implementation of the protocol.
• Hardware test bench for the protocol.
Guiding the refinement to different goals is an open
research issue. We have come a long way and we have a
long way to go.

References

[1] Arango, G., and Blum, B., Special Issue on Applications
of Domain Modeling to Software Construction, Intl.
Journal of Sfw. Eng. and Knowledge Engineering,
Vol. 2, No. 3, September, World Sci. Pub., 1992.

[2] Balzer, R., A 15 Year Perspective on Automatic
Programming, IEEE Trans. Sfw. Eng., SE-11, pp.1257-
1268, November, 1985.

[3] Batory, D. et. al., GENESIS: An Extensible Database
Management System, IEEE Trans of Sfw. Eng., SE-14,
pp. 1711-1730, November, 1988.

[4] Berlin, L., When Objects Collide, Proceedings
OOPSLA90, pp. 181-193, ACM Press, 1990.

[5] Biggerstaff, T., and Richter, C., Reusability Framework,
Assessment, and Directions, IEEE Software, Vol. 4, No.
2, pp. 41-49, March, 1987.

[6] Biggerstaff, T., and Perlis, A., eds., Software
Reusability, volumes 1 and 2, ACM Press Frontier
Series, Addison-Wesley, 1989.

[7] Biggerstaff, T., An Assessment and Analysis of Software
Reuse, Advances in Computers, Vol. 34., Academic
Press, 1992.

[8] Boehm, B.W., Software Engineering Economics, pp.
66, Prentice-Hall, 1981.

[9] Corwin, W., and Wulf, W., SL-230: A Software
Laboratory Intermmediate Report, Technical Report,
Carnegie-Mellon University, May 1972.

[10] Dijkstra, E., Complexity Controlled by Hierarchical
Ordering of Function and Variability, in Software
Engineering, Naur, P. and Randell, B., eds., NATO
Science Committee Report, pp. 181-185, Germany, 1968.

[11] Freeman, P., ed., Tutorial: Software Reusability, IEEE
Press, 1987.

[12] Krueger, C.W., Software Reuse, ACM Computing
Surveys, Vol. 24, No. 2, pp. 131-183, June, 1992.

[13] Griss, M.L., Software Reuse: From Library to Factory,
IBM Systems Journal, Vol. 32, No. 4, pp. 548-566,
1993.

[14] Marks, R.W., The Dymaxion World of Buckminster
Fuller, So. Illinois Univ. Press, 1960.

[15] Mettala, E., The Domain-Specific Software Architecture
Program, Special Report CMU/SEI-92-SR-9, CMU
Software Engineering Institute, June 1992.

[16] McIlroy, D., Mass Produced Software Components, in
Software Engineering, Naur, P., and Randell, B., eds.,
NATO Science Committee Report, pp. 138-155,
Germany, 1968.

[17] Natl. Inst. of Standards and Technology (USA),
Integration Definition for Functional Modeling
(IDEF0), FIPS standard 183, December, 1993.

[18] Neighbors, J.M., Software Construction using
Components, Ph.D. dissertation, University of
California, Irvine, May, 1980.

[19] Neighbors, J.M., Draco: A Method for Engineering
Reusable Software Systems, pp 295-319 in [6].

[20] Parnas, D., On the Criteria to be Used in Decomposing
Systems into Modules, Comm. ACM, Vol. 15, No. 12,
pp. 1053-1058, 1971.

[21] Perlis, A., Proceedings of Workshop on Reusability in
Programming, Newport, RI, September, 1983.

[22] Prieto-Diaz, R., and Neighbors, J.M., Module
Interconnection Languages, Journal of Systems and
Software, Vol. 6, pp. 307-334, 1986.

[23] Prieto-Diaz, R., and Freeman, P., Classifying Software
for Reusability, IEEE Software, pp. 6-16, January 1987.

[24] Prieto-Diaz, R. and Arango, G.,eds., Domain Analysis
and Software Systems Modeling, IEEE Computer
Society Press, 1991.

[25] Prieto-Diaz, R., Status Report: Software Reusability,
IEEE Software, pp. 61-66, May, 1993.

[26] Tracz, W., ed., Tutorial: Software Reuse: Emerging
Technology, IEEE Press, 1988.

[27] Scacchi, W., The Software Infrastructure for a
Distributed System Factory, Software Engineering
Journal, Vol. 6, No. 5, pp. 355-369, September, 1991.

[28] Srinivas, Y., Algebraic Specification: Syntax,
Semantics, Structure, Technical Report UCI-ICS-90-15,
ICS Dept., University of Calif., Irvine, 1990.

[29] Sullivan, H., The Tall Office Building Artistically
Considered, Lippincott's Magazine, March 1896.

[30] Wirth, N., Program Development by Stepwise
Refinement, Comm. ACM, Vol. 14, No. 4, pp. 221-227,
1971.

