
Panel position paper on "Reuse so Far" at Third International Conference on Software Reusability, November 1-4 1994,
Rio de Janeiro, Brazil. Proceedings to appear IEEE Press.

Reuse so Far: Phasing in a Revolution

James M. Neighbors

SADA, 3482 Wimbledon Way, Costa Mesa, CA 92626, USA
neighbrs@netcom.com

Abstract
This paper presents a lifecycle model that

corresponds to a factor of ten improvement in software
development productivity. It is argued that this level of
productivity may be met today without aiding the general
software crisis. Success and failure in software is not just
a matter of improving software development productivity.
Software flexibility for a changing world must also be
maintained.

Key words and phrases: domain analysis,
transformational implementation, software architectures.

1. Introduction

The panel mandate is to identify reuse technology
successes and failures. In addition, our moderator [1] has
challenged us to examine whether any reuse technology
makes a revolutionary difference. To some degree I have
already done this in my keynote address [3] but
Biggerstaff brings up some interesting points.

2. What does a revolution look like?

For the sake of argument I claim that a factor of 10
improvement in the production of software is a revolution.
This is a safe definition since it has been estimated that
software productivity only improved about 3% to 8% per
year [5] over a twenty year time frame that included the
rise of Software Engineering, high-level languages, and
on-line computing. I derived a short lifecycle model [3]
using Boehm's data [2] for new development of a large
project. The lifecycle phases and their percent of the total
effort are:
• Requirements (req, 6%) provide the function,

performance, and external constraints on the system.
• Analysis (ana, 8%) interrelates the data, function and

external interfaces to ensure that the requirements are
complete and understood.

• Design (des, 29%) casts the understanding of analysis
into an architecture of computer process structures
and details the function of members of the structures.

• Implementation (imp, 34%) constructs actual
program code and tests individual codes.

• Testing (tst, 23%) checks compositions of codes and
functional performance of the resulting system.
None of these phases is independent. As an

example, integration testing is directly related to
architectural design. Similarly, functional testing is
directly related to the functions derived in requirements.

I propose to show what a lifecycle providing a factor
of ten productivity increase would look like by phasing
out current lifecycle phases. Reuse technology so far has
done some of this by starting to phase out
implementation. The phase out of implementation has
lessened the unit testing chore. I have used these phase
relationships to propose new lifecycle scenarios (A to E)
with the effort in each phase reduced (Fig. 1).

req ana des imp tst
now 100% 100% 100% 100% 100%

A 100% 100% 80% 20% 60%
B 100% 100% 40% 10% 35%
C 65% 85% 20% 5% 15%
D 50% 60% 10% 0% 10%
E 50% 50% 5% 0% 5%

Figure 1. Lifecycle scenario vs. pct. effort from
current lifecycle

I apply these reductions to the estimated large project
man-month (MM) data [2] which is shown as the "now"
row in Figure 2. Scenario E, which is an improvement
over the succession of scenarios A to D, shows a factor of
ten improvement in productivity (Fig. 2). The number of
man-months is reduced from 416 to 39. Scenario E is
what a revolutionary lifecycle looks like. As can be seen
in Figures 1 and 2 most of the effort has been taken out of
design, implementation and testing.



req ana des imp tst ttl
MM

now 24 32 121 141 98 416
A 24 32 97 28 59 240
B 24 32 48 14 34 152
C 16 27 24 7 15 89
D 12 19 12 0 10 53
E 12 16 6 0 5 39

Figure 2. Lifecycle scenario vs. man-months required
in each phase of lifecycle

 Technologies that aid human developers in these phases
could be judged as "not revolutionary" because in the
revolution, scenario E, these phases are practically gone.
This seems to support Biggerstaff's comment [1] that
"OOP (object-oriented programming) is a small
technological delta that is somewhat out of the
mainstream of this revolution."

3. Can we get there from here?

Can we get from our "now" lifecycle to scenario E?
The surprising answer is we can get there today. The odd
part is that it will not make much of an impact on the
general "software crisis." I would expect the Domain-
Specific Software Architectures (DSSA) projects [4] to
easily achieve scenario E using very domain-specific
program generators. Outside of the particular problem
domain the general software problem remains unchanged.
We could build hundreds of individual DSSA's but
ultimately we would get tired of maintaining the large-
grain components and would desire to reuse common
components. This puts us back into the long-term game of
transformational implementation.

4. Let's buy some parts

An alternative path to scenario E is to use large-
grain commercially available parts, such as Microsoft
Visual Basic VBX controls. The problem with this
approach is that it combines the developing system
version / configuration space [3] with those of all the
parts you use. In the short-term this is a fine approach. In
the long-term the version / configuration space may
prohibit system implementation. As an example, you use
VBX controls under Windows v3.1 to build your system
and under Windows v9.6 all of a sudden VBXs don't
work. The company that supplied your VBXs has, of
course, gone out of business.

5. Flexibility: either bend or break

Change is constant. As software experts we surly
know that our systems requirements, development
techniques, tools and hardware all change at a dramatic
rate. Many of the concepts I advocate [3] (e.g., structural
architecture, version space, configuration space, and
specialization) are only for flexibility. The resulting
system embodies these concepts but they do not change
the system's function. OOP has been successful because it
aids flexibility. From the discussion in the previous
sections we can infer one thing: flexibility costs more.

6. Success and failure

The success or failure of a technology depends on
the goals to be reached. If the goal is to create a lot of
systems in a constrained problem area, then the individual
DSSA's should be extremely successful. If the goal is to
solve the software crisis in general then the DSSA's will
be a failure except with respect to how they contribute to
our knowledge of how to solve the general problem.

Similarly, if the goal is to create short-term solution
systems that don't have to be maintained over time, then
the use of techniques like VBX is a success. However I
would expect building a telephone system or global
network out of these to be a big failure.

Work on the general software crisis currently
languishes around scenario A waiting for a lot of work in
transformational implementation. It's a failure on all
counts. Occasionally some nice things like domain
analysis do come out. I like this area because if we do get
anywhere it promises to significantly change what people
can do with computers. We will need the flexibility.

References

[1] Biggerstaff, T., Is 'Technology' a Second Order Term in
Reuse's Success Equation?, Proceedings 3rd Intl. Conf.
on Reuse, IEEE Press, to appear 1994.

[2] Boehm, B.W., Software Engineering Economics, pp. 66,
Prentice-Hall, 1981.

[3] Neighbors, J.M., An Assessment of Reuse Technology after
Ten Years, Proceedings 3rd Intl. Conf. on Reuse, IEEE
Press, to appear 1994.

[4] Mettala, E., The Domain-Specific Software Architecture
Program, Special Report CMU/SEI-92-SR-9, CMU
Software Engineering Institute, June 1992.

[5] Morrissey, J.H., and Wu, L.S.-Y., Software Engineering ...
An Economic Perspective, Proc. 4th Intl. Conf. Sfw.
Eng., pp. 412-422, IEEE Press, 1979.


