
© Copyright, 1998, Bayfront Technologies, Inc. All rights reserved. -1-

Domain Analysis and Generative Implementation

James M. Neighbors
Bayfront Technologies, Inc.

1280 Bison B9-231
Newport Beach, CA 92660

neighbor@BayfrontTechnologies.com

1. The process
One of the most helpful and harmful concepts in early

Software Engineering was the “waterfall” model of
software development [1]. The model was successful in
relating the general activities of software development.
However, the model was a failure in providing a software
management technique. Management misinterpreted the
parallel steps of the model as sequential steps that could
be used as project milestones. From the management
view, system development moves strictly from analysis to
design to implementation. From the developer view,
system development exists in analysis, design, and
implementation all at the same time, with the hope that
towards the end of a project there is more implementation
than analysis.

I believe there is a similar misunderstanding in how a
particular system specified as a member of an analyzed
domain evolves to an operational system. Is there a
sequence of instantiated features to generic architecture to
reusable assets through component glue to application
generator? I suspect not – for reasons similar to the
waterfall model. This is what happens when the output
from one tool is the input to another tool. Instead, I
believe there is a progressive deepening [2] by the system
implementers of the system description, which is guided
and restrained by the domain designers. Thus, subsystems
deemed important by the system implementers are first
refined (implemented), causing other subsystems to be
constrained by the representation decisions made during
the refinement. The architecture of the system evolves
with these decisions [3]. Standard architectures are guides
but not restrictions. Otherwise, what would one do with a
system that composes two standard architectures?

2. What results from domain analysis?
The result of domain analysis is a domain that supports

the description of similar member systems. In Draco a
domain consists of the following definitions [4]:

1. Parser – Described in augmented BNF, explains how
to convert a system description to an internal form.

The language described by the parser is the domain
language.

2. Display – Describes how to display internal forms as
text and graphics for system implementers.

3. Optimizations – Describe the rules of exchange
between statements in the domain language.
Optimizations may be procedural or source-to-source.

4. Components – Specify the semantics of the domain
by implementing constructs of the domain language
in the domain language of other domains. Each
component provides one or more refinements that
restate the construct in different domains.

5. Generators – Describe programs that transform a
statement in the domain language into another
statement in the same domain.

6. Analyzers – Describe programs that gather
information about the internal form for use by the
other domain parts.

7. Strategies and Tactics – Describe plans for
refinement based on available refinements and
domain interconnections.

The domains are manipulated by Draco with guidance
by system implementers. This basic scheme is over 18
years old. Why after so many years are we still talking
about Draco? I believe there are three basic reasons.

 First, Draco actually describes an individual notation,
the domain language, for each domain. Consider that the
sequence (A B) and alternation (A|B) operators of BNF (a
domain language in itself) are equivalent to the AND/OR
constructs of feature trees used by many DA methods.
However with an augmented, recursive BNF the class of
descriptions is infinite. Further, consider the utility of
language – it restricts the allowed combinations. A simple
component library says nothing about how the
components may be combined. This effort, placed on each
user of the library, represents a huge and unnecessary
education effort. FORTRAN, Java, SQL, and OpenGL are
successful as languages and protocols, not as

© Copyright, 1998, Bayfront Technologies, Inc. All rights reserved. -2-

mathematical, networking, database, and graphics
component libraries.

Second, Draco components provide multiple
refinements of a component into other domains – not
necessarily executable source code. This provides three
features: high-level domain specific optimization, variety
in implementation goals, and variety in implementation
architectures. As an example, a domain for describing
communications protocols may: 1) optimize a particular
domain language description; 2) use the same improved
description to produce program code (e.g., C), code &
hardware (e.g., C & VHDL), hand simulation educational
demo, classical simulation input (e.g., SimScriptII),
formal theory deadlock analysis input (e.g., Promela), or
graphic diagrams; and 3) implement the code and
hardware oriented results as parallel code, inline code,
threaded code, or threaded code interpreters. When other
DA implementation techniques discuss “the generator”,
there is usually an implicit target of program code. The
target is not always just program code, although it should
always be a requirement.

Third, the use of conditions and assertions on the
various refinements of a component allow us to address
the important reusability questions. Given a system
description (e.g., protocol description), a set of domains,
and a set of target domains (e.g., C & VHDL) the
reusabilty questions are:

1. Can the description be refined to only the targets?

2. If so, what is a possible implementation?

3. If not, what system description changes, additional
domains or additional refinements are needed?

These questions are important in a complex domain
hierarchy because they directly address the issue of scale
supported by composing domains. From a formal theory
standpoint, questions 1 and 2 are decidable (with a high
complexity in the general case) only if a limited
condition/assertion language and a limited refinement
mechanism are used [5]. What can be done about question
3 is unknown but important. This points out some key
features of the Draco approach: the use of a restricted
refinement mechanism, the limiting of some domain parts
to be intradomain only, and the use of restricted power
condition and assertion expressions. These decisions
represent a conscious tradeoff between generative
mechanism power and the ability to analyze what the
mechanism will do given a particular problem to refine.
This is unimportant if a DA generator takes specifications
in a single domain and generates directly into code forms,
because there is no composition of domains. However, as
many domains are added to the domain hierarchy, the
ability to analyze the domain interactions as handled by

the generative mechanism becomes crucial to the
development of refinement (implementation) strategies.
With all DA generation techniques, the reader should
consider:

1. Is the mechanism general? Can a new domain be
added without reprogramming the mechanism?

2. Does the generative mechanism support domain
composition? Do new domains reuse each other and
not displace a single domain?

3. Is the mechanism scaleable to programming in the
large? Can the mechanism be analyzed in action on
large problems using a large set of domains?

 The Draco approach provides the first two and is weak
on scaling, although some work looks promising [6].

3. Conclusions
Automatic Programming research in the 1970s rated

their techniques using a power function. The power
function of a technique is the ratio of effort required to
develop a system using the technique over the effort
required to develop the same system using conventional
techniques. Software Reuse recognizes that large gains in
the power function are achieved by reusing system
artifacts. Domain Analysis recognizes that large gains in
reuse are achieved by reusing as much analysis and
design as possible. The Draco approach recognizes that
large gains from DA are achieved by having the domains
reuse each other.

The power function fails to recognize the expense of
putting the technique in place. I believe we are on an
evolutionary path from cheaply implemented component
libraries through one domain generation to very
expensive domain hierarchies. As more demands are put
on software production and education, the costs will
become justified.

4. References
[1] Royce, W. W., Managing the Development of Large Software

Systems, reprinted in 9th Intl. Conference on Software Eng., pp. 328-
338, March, 1987.

[2] Simon, H. A., The Sciences of the Artificial, MIT Press, 1969.

[3] Neighbors, J. M., An Assessment of Reuse Technology after Ten
Years, 3rd International Conference on Software Reuse, pp. 6- 13,
November 1994.

[4] Neighbors, J. M., Draco: A Method for Engineering Reusable
Software Systems, Software Reusability, T. Biggerstaff & A. Perlis
eds., Vol. 1., pp. 295-319, ACM Press, Addison-Wesley, 1989.

[5] Neighbors, J. M., Software Construction Using Components, Ph.D.
diss., University of CA, Irvine, May 1980.

[6] Katz, M. D., Volper, D. J., Constraint Propagation in Software
Libraries of Transformation Systems, Intl. Journal of Software Eng.
and Knowledge Eng., Vol.2, No.3, September, 1992.

