
TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 1

Domain Analysis and Generative Implementation

ICSR5 1998

James M. Neighbors
Bayfront Technologies, Inc.

neighbor@BayfrontTechnologies.com

TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 2

Generative Process

• Lessons from the waterfall model of Software Engineering.

• System construction using Domain Analysis not a simple flow through tools
(it is intellectual property development not EDP).

• System construction must support progressive deepening.

• Evolving system in representations from analysis to code at any given time.

TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 3

Domain Analysis

• Domain Analysis results in a domain that supports the specification and refinement of
similar member systems.

• Each Draco domain contains:
Parser intradomain domain language source to internal form
Display intradomain internal form to source
Optimizations intradomain semantics, rules of exchange in a domain language
Components interdomain semantics, operational meaning, multiple refinements
Generators intradomain semantics, generation by program
Analyzers intradomain semantics, gather information about domain statement
Tactics intradomain combining above to refine out of a domain
Strategies interdomain combining above to refine full system across domains

• Interdomain connections are consciously limited and managed.

TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 4

What is different about Draco?

• Actual source form language (e.g., SQL, OpenGL, VHDL) - not a library/catalog.

• Components contain multiple refinements into other domains, provides:
1. high-level domain specific optimizations
2. variety in implementation goals
3. variety in implementation architectures

• Conditions and assertions on refinements address reusability questions
1. Can a system description be refined to only the target domains?
2. If so, what is a possible implementation?
3. If not, what additional domains or refinements are necessary?

• Scale guaranteed by a conscious tradeoff between generator power and the ability to
analyze the generator in operation.
1. restricted refinement mechanism
2. restriction of most domain parts to intradomain
3. restricted power condition and assertion language
4. only important when composing domains during refinement

TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 5

Questions on DA Based Generators

• Is the generator general? Can a new domain be added without reprogramming the
mechanism?

• Does the generator support domain composition? Do new domains reuse each other
and not displace a single domain?

• Is the generator scaleable to programming in the large? Can the mechanism be
analyzed in action on large problems using a large set of domains?

TM Bayfront Technologies, Inc. copyright © 1998 ICSR98 6

Conclusions

• Automatic Programming power function

• Software Reuse recognizes power function gains by reusing system artifacts.

• Domain Analysis recognizes power function gains by reusing analysis and design.

• Draco approach recognizes power function gains by having domains reuse each other.

• Power function fails to recognize the expense of putting technique in place.

• Availability & costs of software production and education will force issue.

