
-1-

How to Solve the Reuse Problem:

Find Out What Isn't Reusable and Don't Use It

James M. Neighbors
Bayfront Technologies, Inc.

1280 Bison B9-231
Newport Beach, CA 92660

neighbor@BayfrontTechnologies.com

1. What Isn't Reusable
The title of this position paper might seem a foolish

answer but inverting the problem makes it easier to see
the reuse constraints. Members of our panel represent the
latest software technology applied to reuse. I am sure that
not one of our panelists will claim to have found the
answer. As with most problems, a solution will combine
these technologies into a development process. The
question is when and where to use each technology

 In the discussion that follows, "It" pertains to all of the
reusable artifacts and techniques that we discuss in
software reuse. Each of the following sections discusses a
constraint to reuse and suggests a panel member whose
works focuses on eliminating that constraint.

1.1 It isn't reusable if it doesn't compile, link, and
execute as it used to.

This is the untold secret of software reuse. Domain and
code libraries decay and they must be maintained. The
decay stems from changes in the version and
configuration space. There are versions of the library
(e.g., Numerical Recipes [1]), versions of the tools that
compile the library (e.g., Microsoft C v5.0), and versions
of the environment (e.g., Microsoft Windows 98). There
are configurations of the library (e.g., Numerical Recipes
in C and FORTRAN), configurations of the tools that
support the library (e.g., Microsoft C v5.0 compiler
switches), and configurations of the environment (e.g.,
Microsoft Windows 98 with TCP/IP networking). A
new compiler and configuration might cause serious
damage to an existing code library base. Consider that the
cost of library maintenance should be spread across many
projects. This makes the maintenance an organizational
overhead expense. This type of expense is typically
difficult to justify in organizations. The alternative of
making the library a cost center can inhibit organizational
reuse because each project using the library has to pay a
fee.

On our panel, Jim Waldo's work on Java directly
addresses the issue of code stability. Java promises a
stable, compatible and safe programming environment
with a controlled configuration and version space. In the
past market forces have made this difficult.

1.2 It isn't reusable if you don't understand what it
does.

The history of computing is driven by optimization.
There is always the desire for more to be done with
current computing resources. This will always be the case.
However, currently it seems that software production is
more a constraint than hardware speed. Today’s emphasis
seems to be on getting the software to work at all.
Assuming we use algorithms whose complexity will scale,
we know that Moore's Law will provide us with raw
computing power. However, a legacy of the optimization
era is the common use of side-effecting operations. As an
example, CPUs set many condition bits on different
operations. These side effects are not a problem by
themselves, but when mixed with multiprocessing,
caching, and pipelining they become a complex issue.
Compiler builders and programmers spend quite a bit of
time understanding these side effects. The same principle
applies to application-oriented operations. In graphics,
the idea that a drawline function updates the pen position
is not a problem - until two processes draw using the
same pen at the same time.

On our panel, Phillip Wadler advocates functional
programming to aid program understanding. Functional
programming abhors side effects and makes programs
easier to understand because the context of each function
is local to invocation.

1.3 It isn't reusable if it doesn't address the user's
problem.

During development, the user's problem evolves from
what to model in the problem domain to how to
implement and ensure a long system lifetime. Thus, the

-2-

user's problem is not constrained to the user's problem
domain. However, Software Engineering has found that a
majority of the effort to build a new system is spent in the
requirements, analysis, and design phases of system
development. Thus, if implementation is only 15% of the
effort of development, then a technique that completely
automates implementation only improves the process by
15%. Domain Analysis attempts to reuse as many
artifacts as possible from the early phases of system
development. This, of course, only works for developing
systems from problem domains that have been analyzed.

On our panel David Weiss' work on program families
best typifies a solution to this constraint.

1.4 It isn't reusable if it can't interface to existing
systems.

Most systems have to interface to an operating
environment. Even stand-alone systems have to interface
to ever more complex hardware subsystems. Presently
most systems interface to some subset of graphics,
networking and database subsystems. These interactions
are evolving to standard complex protocols with hardware
independent data. The benefit of such a standard to reuse
is that large grain reusable subsystems may be made to
encapsulate services.

On our panel, Tony Williams' work on COM/DCOM
addresses the environment and development of these
protocols. The work also addresses schemes for
identifying versions and configurations.

2. Judging the technology
A "Magic Bullet" reuse technology is one that meets

all of the above constraints in all system development
cases. Clearly, we cannot expect such a technology to
exist. There are always new problem domains, new
versions, new configurations, new notations and new
subsystems. The challenge of being a Software Architect
is to minimize the effect of these changes through the
lifetime of the system while still providing the system's
functional requirements.

All of the technologies represented on our panel
address the above constraints to some degree. They also
all violate the constraints to some degree. Each new
system development project requires the architect to
determine which techniques are appropriate for that
project.

3. References
[1] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W.

T., Numerical Recipes: The Art of Scientific Computing, Cambridge
University Press, 1986.

