

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 1

Techniques for Generating Communicating Systems

ICSR7/GP2002

James M. Neighbors
Bayfront Technologies, Inc.

1280 Bison B9-231
Newport Beach, CA 92626 USA

+1 714 436 0322x4
James.Neighbors@BayfrontTechnologies.com

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 2

Analysis Model

Triad Communicating Systems Model

• Analysis model provides data and control dependencies.
• Processes produce and consume dataforms.
• Dataforms are wrapped, sent and unwrapped by protocols.
• Protocols asynchronously exchange messages with processes.
• This talk is not concerned with details of triad model but with

ramifications of using it within a generator.

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 3

Architectural Model

• Architectural model shows abstractions of operating elements.
• Two triads are overlaid to show a web client-server relationship.
• Assume the construction of a generator in this web serving area.
• Level of abstraction (LOA) decreases left to right.

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 4

Instance Model

• Instance model shows concrete instances of operating elements.
• Each concrete instance is under the control of a separate social

organization.
• Version and configuration space complexity requires Architectural

Model be the model maintained by our generator.
• “The classical defense that generators (and people) have used

against low-level complexity is to create a simpler model at a
higher level of abstraction.”

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 5

Meta Analysis Model

• Level of abstraction (LOA) increases left to right.
• As before, meta elements established to cope with lower-level

complexity (e.g., what is a complete set of data produced or
consumed by a process?)

• We naturally extend basic triad model to meta models of all
elements: dataforms, processes, and protocols.

• The society of each analysis element has created their own meta
abstractions.

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 6

Meta Meta Analysis Model

• Why meta-meta models? As before, meta elements established to
cope with lower-level complexity both social and definitional (e.g.,
versions of XML).

• For generator locates version problems into refinements.
• In some cases definitionally unnecessary (e.g., XML defines IDL,

IDL defines XML) but important for composition of domains.
• Deals with “root of the world” objects from databases, networking,

OS, applications and graphics.
• These are just implementation domains not application domains.

 %D\IURQW 7HFKQRORJLHV� ,QF� FRS\ULJKW � ���� ICSR/GP2002 7

Conclusions

Isn’t having private abstractions anti-standard? It’s good to be
standard but not at the expense of trying to maintain an impossible
version and configuration space. Where are those “standards”
anyway? A generator can be externally standard using internal
private abstractions (e.g., subsetting.)

What is this abstraction process where we are constantly defining a
higher level of abstraction to avoid lower-level detail? In my opinion
it is the process of establishing a domain hierarchy under domain
analysis. Notice that each of these levels has a domain-specific
language, optimizing transformations, and refinements to other
domains.

Why should we not use code fragments directly in the generator?
They have a detail, version and configuration space. Also they can
prohibit the production of non-code artifacts such as diagrams,
simulators, and formal theory analysis.

