Techniques for Generating Communicating Systems

ICSR7/GP2002

James M. Neighbors
Bayfront Technologies, Inc.
1280 Bison B9-231
Newport Beach, CA 92626 USA
+1 714 436 0322x4
James.Neighbors @BayfrontTechnologies.com

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 1

7N\

Analysis Model

Process

produce!

Consume message

wiraps
dataforms UY™T@P protocol

Triad Communicating Systems Model

Analysis model provides data and control dependencies.
Processes produce and consume dataforms.

Dataforms are wrapped, sent and unwrapped by protocols.
Protocols asynchronously exchange messages with processes.
This talk 1s not concerned with details of triad model but with
ramifications of using it within a generator.

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 2

7N\

Architectural Model

process webserver

(process)

producef

Consume message

HTTP
(protocol)

HTML

wrap/ (dataform)

dataforms Y™T@P protocol

(process)

webbrowser

Architectural model shows abstractions of operating elements.
Two triads are overlaid to show a web client-server relationship.
Assume the construction of a generator in this web serving area.
Level of abstraction (LOA) decreases left to right.

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 3

7N\

Instance Model

Apache HTTP
process webserver Server/2.0

(process)

{process)

produce!

consume message

DTD
HTTP XHTML/.0
{protocol) Transitional
(dataform)

HTTP/1.1
RFC2616
(protocol)

HTML
{dataform)

wirap/
dataforms ™80 protocol
[process) {process)

webbrowser Microsofi
Internet

Explorer/5.50

¢ Instance model shows concrete instances of operating elements.

e Each concrete instance is under the control of a separate social
organization.

e Version and configuration space complexity requires Architectural
Model be the model maintained by our generator.

o “The classical defense that generators (and people) have used
against low-level complexity is to create a simpler model at a
higher level of abstraction.”

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 4

7N\

Meta Analysis Model

process

producef

consume Message

wrap/
dataforms UMD protocol

meta
process

threaded
languages

meta meta
dataform protocol
sDL, POL
ML, DL, . .
ASN.1. CDIF FShs

e Level of abstraction (LOA) increases left to right.
e As before, meta elements established to cope with lower-level
complexity (e.g., what is a complete set of data produced or

consumed by a process?)

e We naturally extend basic triad model to meta models of all
elements: dataforms, processes, and protocols.

e The society of each analysis element has created their own meta

abstractions.

‘%‘ Bayfront Technologies, Inc. copyright © 2002

7N\

ICSR/GP2002 5

Meta Meta Analysis Model

2
meta meta
process process

threaded
languages

process

produce/

consume message

meta meta meta2 meta 2
wrap/ dataform protocol dataform protocol

dataforms Y™EP protocol XML, IDL, SOL, PDL, imports metaZ
ASM 1, CDIF FSMs process and protocol
defs and refines to
meta dataform

e Why meta-meta models? As before, meta elements established to
cope with lower-level complexity both social and definitional (e.g.,
versions of XML).

e For generator locates version problems into refinements.

¢ In some cases definitionally unnecessary (e.g., XML defines IDL,
IDL defines XML) but important for composition of domains.

e Deals with “root of the world” objects from databases, networking,
OS, applications and graphics.

e These are just implementation domains not application domains.

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 6

7N\

Conclusions

Isn’t having private abstractions anti-standard? It’s good to be
standard but not at the expense of trying to maintain an impossible
version and configuration space. Where are those “standards”
anyway? A generator can be externally standard using internal
private abstractions (e.g., subsetting.)

What is this abstraction process where we are constantly defining a
higher level of abstraction to avoid lower-level detail? In my opinion
it is the process of establishing a domain hierarchy under domain
analysis. Notice that each of these levels has a domain-specific
language, optimizing transformations, and refinements to other
domains.

Why should we not use code fragments directly in the generator?
They have a detail, version and configuration space. Also they can
prohibit the production of non-code artifacts such as diagrams,
simulators, and formal theory analysis.

‘%‘ Bayfront Technologies, Inc. copyright © 2002 ICSR/GP2002 7

7N\

