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Abstract

More than twenty years ago the idea of producing software
systems from reusable software components was proposed.
Since that time many changes have taken place in Computer
Science and Software Engineering, but software systems are
still built as one-of-a-kind craftsman efforts. A method for
software construction using components is rationalized using
experience from software components, program
transformations, system architecture, industrial large systems,
automatic programming and program generation. Experience
with the method is discussed. The limiting factors of the method
that prevent the widespread use of reusable software
components are identified.

Introduction

We will focus on schemes for the production of large, quality
software systems that can be extended and maintained over a
lifespan of many years. The paper extracts requirements for a
knowledge-based system constructing system. These
requirements are used to rationalize the Draco methodology
[Neighbors84b].

There are two primary approaches to producing anything: the
craftsman approach and the mass-production approach. The
craftsman approach relies on a highly skilled craftsman to build
an object from raw materials. The raw materials are fashioned
into custom parts and fitted together to form custom assemblies.
The mass-production approach relies on prebuilt standard parts
and standard assemblies of parts to be combined to form the
object. Each of the approaches has its good and bad points.

With the craftsman approach, the custom parts and assemblies
are tailored to the specific problem at hand. These custom parts
can have a very efficient implementation; probably better than
could be built from standard parts. Given the time, a craftsman
always builds a better object than one constructed from standard
parts. By “better” here we mean more responsive to the goals of
construction. The craftsman approach has its drawbacks in that
craftsmen are expensive to employ and hard to find. Any system
built by a craftsman is a custom system and will require custom
maintenance. This means that the maintenance must be done by
a craftsman who must shape new custom parts to fit with the old
custom parts in an object.

The mass-production approach offers cheaper construction costs
since the object is built from prebuilt standard parts. An
assembly is a structure of standard parts that cooperate to
perform a single function. The use of standard parts and
assemblies implies the availability some knowledge about the
failure modes and limits of the parts. This information is
unavailable with custom parts. Use of standard parts also
creates a language for discussion of future objects and

extensions to objects currently under construction. The mass-
production approach has its drawbacks in that the design of
useful standard parts and assemblies is very expensive work and
requires craftsman experience. Also, once a set of standard parts
is created it may not suffice to construct all the objects desired.

Our wish to build software systems from reusable software
components represents a shift from craftsman production to
mass-production. This shift is forced upon us by the ever
increasing size of software systems we build.

Software Components

The idea of constructing software from general, well-specified,
and well-tested software components is an appealing one. After
all, we software engineers have seen the computer hardware
engineers succeed using this technique' time after time. Mcllroy
[Mcllroy68] is one of the earliest and most eloquent advocates
of software components. He envisioned a complete industry
similar to the semiconductor industry with factories solely
dedicated to the mass-production of all kinds of software
components. These components are cataloged and placed into
libraries for ready access.

“I would like to see components become a dignified
branch of software engineering. I would like to see
standard catalogues of routines, classified by precision,
robustness, time-space performance, size limits, and
binding time of parameters. I would like to apply
routines in the catalogue to any one of a large class of
often quite different machines...What I have just asked
for is simply industrialism, with programming terms
substituted for some of the more mechanically oriented
terms appropriate to mass production.” [Mcllroy68]

Further, if the idea of software components works well perhaps
we could bind them together using other analogies to the
hardware world like “busses” and “sockets”. If these techniques
worked they would move software production out of the
craftsman era and into the mass production era. These are brave
and intuitive ideas that have not come to pass. Why? It is a goal
of this paper to answer that question using experience.

In 1973 I became a project software manager in a company that
specialized in selling custom real-time, high-speed data
acquisition and control systems. I had read Mcllroy’s vision of
software components and became convinced that constructing
systems using software components was the way to go. I asked
the programmers on my project to extract components from the
systems they had built. Programmers throughout the company
became interested and submitted components. A programmer
had to submit a component to get a copy of the catalog and the
object module library. It was not a restriction. It was more a
matter of pride.

Please address correspondence to James M. Neighbors, Systems Analysis, Design, and
Assessment (SADA), Box 5017, Irvine, CA 92716, USA

1. Later we will argue that hardware and software engineering only appear similar.
However this early view did motivate work on software components.



Software Components

The company made data acquisition hardware so the first wave
of components were drivers for the hardware. All the work was
in assembly language so the components were assembled,
cataloged, and placed in an object module library. The second
wave of components were assembly language routines that
came from the computer manufacturer to perform useful
functions like emulate the floating point hardware, string
handling, formatted printing, math functions, etc. At this point
we could snap together a simple and not very fast system. The
third wave of components came from a completely unexpected
source — the senior systems analysts. Systems analysts specified
what the systems did. Programmers simply made the hardware
do that. Project software managers and not programmers talked
to systems analysts. There were very few of them (3 per 25
programmers). They had been in this business for many years
and only got involved with an actual system to fix a mess. They
submitted the most wondrous components! They were “tricks”
that really made the systems fast. The following are some of the
components submitted by the systems analysts:

1. Methods for using the timers to interrupt before the
data interrupt to avoid the interrupt context switch
time.

2. Optimal interleaving of sensor data requests and
reads to avoid data settling time.

3. Arcane algorithms for converting synchro bit data to
angles without sine and cosine tables.

As programmers who had experienced these problems and did
not invent these answers we quickly made these techniques a
part of our repertory and systems.

The software component library was a success over the
traditional craftsman approach taken by the company. We
produced small systems (5000 assembly lines) that interfaced to
other systems mostly as equipment (switches and sensors).
Ultimately, we reduced the time to build a new custom system
in this constrained domain to 20% of the craftsman
development time. However problems began to appear with the
software component library. As the “inventor” of this concept at
the company I became the agent for finding and modifying
components from the library. In this role as a librarian certain
problems with the library became apparent. In some cases a
programmer was looking for a program part that could just be
“plugged in” without change. In other cases the programmer
was looking for a program part that could be changed before
use. As an example, a senior analyst had submitted a component
that calibrated and accessed a nonlinear temperature sensor with
0.01 degree accuracy through a very complex interpolation. A
programmer with a new application only needed 0.5 degree
accuracy at higher speed. Neither of us knew how to change this
complex component. This is an important consideration in the
design of a library of reusable program parts. What a part does
only allows its reuse without change. What a part does, how it
does it, and how changes may be made allows the reuse of a
component with change.

One straightforward way of organizing a collection of software
parts is to put each part into a library of source code indexed by
the “what” description of each part. Potential users of the part
would search through the “what” descriptions of the parts of the
library and select the appropriate part. This is the scheme used

by most source program libraries. The problems encountered by
this scheme are:

1. classification problem: What is a proper language or
scheme for specifying and searching “what”
descriptions?

2. search problem: The burden of searching the library
is placed on the potential user of a part. Quite often it
is easier for a potential user to build a part from
scratch rather than find a part in a library and
understand the constraints on its use and the
ramifications of its design decisions.

A software component library offering components that can be
changed before use must store “how” information in addition to
“what” information for each part. This “how” information
describes how the part performs its function and how changes
are made. Organizing a library allowing change will encounter
the following additional problems:

1. structural specification problem: What is a proper
language or scheme for specifying “how”
descriptions and constraints of usage between
software parts?

2. flexibility problem: Which design and implementation
decisions are flexible and which are fixed in each of
the software parts in the library.

Within the context of the existing tools at the company (text
editors, linkers, and object module libraries) we pushed the
software component library concept to its limit. I entered
graduate school hoping that Computer Science could solve my
library problems.

In graduate school I learned of projects [Corwin72, Campos78]
that not only had tried software component libraries but had
extended the hardware analogy to include “sockets” and
“busses” between the components. This let them characterize
and type the data flowing between the modules. This work
suffered from the same general library problems I had met in
building small component libraries. However, a more ominous
problem occurred to me as I read how their assembly
mechanism assembled and checked the component
interconnections. Inherent in all the software component work is
that (in Mcllroy’s vision) the component business will “scale
up” to cover all aspects of software production on all sizes of
systems. The library problem limits the straightforward idea of
software component libraries from scaling up:

“If the parts in the library are to be modified and reused,
then they must be small to be general, flexible, and
understandable. However, if the parts in the library are
small, then the number of parts in a usable library must
be very large. These two objectives are always in
conflict. If a library contains many small parts, then it
lessens the structural specification and flexibility
problems while increasing the classification and
searching problems. If a library contains a small number
of large parts, then it lessens the classification and
searching problems while increasing the structural
specification and flexibility problems.” [Neighbors80]
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A successful software component library would contain
millions of tiny components. The data passed along “busses”
and “sockets” between components changes at component use
time rather than being fixed at component creation time. How
could such a library be organized? The “library problem”
stopped the mass production of software components.

Working on the data acquisition and control systems gave me
respect for people like the senior systems analysts who knew
how your system worked before you explained it to them. Later
I would come to call them “Domain Analysts” because they
understand how the entire class of systems that addresses a
specific problem domain should work. As with the acquisition
and control systems domain, the domains are never found in
books — perhaps they should be but it is hard to classify material
about some problem domains. Most problem domains are so
case specific that no overriding structure is yet discovered on
which to base a book. They are in a state similar to compiler
theory during the 1950s. The basic structure has not been
identified. Domain Analysts make the systems of the world
work in the absence of widely accepted structural models.

Lessons from Software Component Library Research:

1.  Libraries have an immediate impact and are a success
but they do not solve the larger problem. The “library
problem” prohibits simple software component
library schemes from scaling up to larger problems.

2.  The reuse of program parts without change is
extremely successful. The implementation of
compilers by linkage to run-time support routines is
an obvious example of this technique.

3. The reuse of program parts changed by programmers
is a major activity of detailed design and coding.
Encyclopedic works such as [Knuth68, Sedgewick84,
Press86] are successes because they serve as guides
supplying information above the level of
programming language code. This tells the
programmer what the part does and how it does it.
This “how” information allows the programmer to
adapt the part to the system under consideration.

4.  Synthesizing components for sorts, list insertions, and
most operations on numbers are not the problem.
They may be used as research examples, but if that is
the extent of the work, then the reader should be wary
of whether the work will “scale up” or not.

5. Hardware analogies such as “busses” and ‘“‘sockets”
constrain software. Software components pass more
complex structures than hardware components. For
software components the structure of information
passed through interface points changes at component
use time. For hardware the structure is usually a fixed
standard declared at component creation time.

6. “Domain Analysts” are a wealth of formal and
informal experience about how systems in the
domain actually work. Any successful technique for
building systems in a problem domain must have a
method for gathering and using this valuable
information.

Software Components

Program Transformations

I became interested in program transformations as a way to
introduce flexibility into source code software components. I
believed that very general components, such as the high
accuracy temperature sensor component discussed earlier, might
be transformed into different lower accuracy versions
dynamically without having to store those versions explicitly. If
this could be done, it would aid the “library problem” by
reducing the number of components in the library.

Source-to-source program transformations treat a program as an
algebraic object with rewrite rules. Each transformation has a
left-hand pattern (LHS), a right-hand pattern (RHS), and
enabling conditions (EC) on the pattern variables [Standish76].
A simple transformation would be:

LHS: X*(IF P THEN A ELSE B) <=>
RHS: (IF P THEN X*A ELSE X*B)
EC: X and P are execution order independent

The flavor of source-to-source transformations can be
experienced by transforming a simple matrix multiply
[Kibler77].

FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
BEGIN
C[I,d]:=0;
FOR K:=1 STEP 1 UNTIL N DO
C[I,Jd]:=C[I,J]+A[I,K]*BI[K,J];
END;

Now assert that matrix A is the identity matrix using an equation
for the values of A as:

A [row,col] -> (IF row=col THEN 1 ELSE 0)
The original matrix multiply is rewritten as:

FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
BEGIN
C[I,J]:=0;
FOR K:=1 STEP 1 UNTIL N DO
C[I,J]:=C[I,J]1+(IF I=K THEN 1 ELSE 0)*B[K,J];
END;

General program transformation rules that apply to assignments,
loops, and arithmetic can specialize this program. There are
about 30 low-level transformations applied. The major steps in
the transformation of the inner loop are shown below.

C[I,J]:=0;
FOR K:=1 STEP 1 UNTIL N DO
C[I,J]:=C[I,J]1+(IF I=K THEN 1 ELSE 0)*B[K,J];

Cc[I,d]:=0;
FOR K:=1 STEP 1 UNTIL N DO

(IF I=K THEN C[I,J]:=C[I,J]+1*BI[K,J]
ELSE C[I,J]:=C[I,J]+0*B[K,J]);
C[I,J]:=0;
FOR K:=1 STEP 1 UNTIL N DO

IF I=K THEN CI[I,J]:=CI[I,J]+BI[K,J];

Cc[I,d]:=0;
IF (I>=1) AND (I<=N) THEN
C[I,J]:=C[I,J]+BI[I,J];



Program Transformations

Cc[I,J]:=BI[I,J];

The final version of the matrix multiply where matrix A is the
identity matrix becomes a matrix copy as expected.

FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
C[I,Jd]:=BI[I,J];

To perform this simple transformation at the low level of
abstraction of an algorithmic programming language the
transformation system has to use many transformations from a
large space of possible transformations. This is a big search
problem and hard work. Planning sequences of these simple
low-level transformations can require a lot of Al planning
[Fickas85].

Now consider this same matrix multiply example in a language
like APL that embraces the concept of matrices and matrix
operations. This new language is at a higher level of abstraction
than the usual algorithmic programming language. Given that
1. 18 the identity matrix in this new language the identity
matrix multiply becomes the simple transformation.

LHS: Cp5: =1 mac*Bnar <=> RHS: C i : =B
EC: structures of C and B are equal

Notice that this is similar to the transformation for multiplying
integers or reals by 1 in algorithmic languages. From this simple
example we can see that a lot of hard work can be avoided by
creating levels of abstraction above algorithmic languages that
directly define the concepts of interest.

The example above does not advocate doing away with the
low-level algorithmic transformations. They serve a useful
purpose in the optimization of general programs under arbitrary
conditions. Consider the complex optimization performed by
the transformations under the assertions that A is an upper-
triangular matrix and B is a lower-triangular matrix.

A[row,col] -> (IF row<col THEN A [row,col] ELSE 0)
B [row,col] -> (IF row>col THEN B [row,col] ELSE 0)

In some cases if a transformation is not performed at a high
enough level of abstraction then the effect of the transformation
may never be achieved. Consider the case of an algorithmic
language and an exponentiation operator (**). If the phrase
X**2 were encountered in a program we could employ the
simple source-to-source transformation

LHS: X**2 <=>RHS: X*X
EC: X is side-effect free

to convert it to multiplication; or we could macro expand a
general implementation of the exponentiation operator and then
try to simplify. The “binary shift method” is a general
expansion of the exponentiation operator when the power is a
positive integer. The macro expansion of X**2 using the binary
shift method is shown in figure 1.

BEGIN
POWER:=2; NUMBER:=X; ANSWER:=1;
WHILE POWER>0 DO
BEGIN
IF ODD (POWER) THEN ANSWER:=ANSWER*NUMBER;
POWER:=POWER SHIFT RIGHT 1;
NUMBER : =NUMBER *NUMBER ;
END;
RETURN ANSWER;
END;

Figure 1: Implementation of X**2 using Binary Shift Method

The “Taylor expansion method” is a general expansion of the
exponentiation operator where the number raised to a power
must be positive. The macro expansion of X**2 using the
Taylor expansion method is shown in figure 2.

BEGIN
SUM:=1; TOP:=2*LN(X); TERM:=1;
FOR I:=1 TO 20 DO
BEGIN
TERM: = (TOP/I) *TERM;
SUM: =SUM+TERM;
END;
RETURN SUM;
END;

Figure 2: Implementation of X**2 using Taylor Expansion

The “binary shift method” expansion may be reduced to a
simple multiply by chaining together many low-level
algorithmic language source-to-source transformations similar
to the process of transforming matrix multiply by the identity
matrix. The “Taylor expansion method” expansion cannot be
reduced to a simple multiply by general low-level
transformations because it is an approximation of
exponentiation. It suffices as an implementation because of its
context (in this case that 20 terms of accuracy is acceptable) but
it is not equivalent. Other investigators in this area ran into the
same problem.

“We are able to make full use of the algebraic laws
appropriate to this higher level. For example, once calls
to set operations have been replaced by their list
processing bodies many possibilities for rearrangement
and optimization will have been lost.” [Darlington73]

These examples show that very simple mechanisms (source-to-
source transformations) applied at a higher level of abstraction
can exceed in power very complex mechanisms (Al planning
and dataflow analysis) applied at lower levels of abstraction.
Some optimizations are no longer possible as we go to lower
levels of abstraction. Level of abstraction knowledge about the
problem domain is more powerful than general mechanisms.

The reader might well ask “Who would write programs
containing such statements as X**27?” Systems that combine
very general software components create such statements all the
time. They reflect generality that is not being used in a
particular case. The role of source-to-source transformations is
to smooth out this generality using a simple mechanism on
concepts at a high level of abstraction. Any work that seriously
uses layers of knowledge abstraction will employ simple
source-to-source transformations for optimization.
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I investigated a simple scheme of Markov processes that
provides a procedural capability with proof of termination for
source to source transformations [Neighbors80]. This scheme is
useful for transformations that must propagate or use global
information.

Lessons from Program Transformation Research:

1. There are few, if any, equivalence preserving
transformations. This is not a problem as exemplified
by optimizing compilers. Correctness preserving
transformations in a given context are the issue.

2. Using concepts at the “right” level of abstraction is
an extremely powerful optimization technique. This
represents a tradeoff between planning and
knowledge.

3. The rules of exchange in a domain must be absolute
with respect to the semantics of the domain. This
means the rules apply independent of any
implementations chosen for the domain. The
granularity of the semantics of a domain only applies
to statements in the domain — not implementations.

System Architecture

Software Engineering system architecture theories gave me the
tools to cope with complexity. If software components were
ever to be a success, clearly something beyond including
millions of components into a flat catalog must be the goal. The
early Software Engineering discussions on levels of abstraction
provided very strong ideas.

“We understand complex things by systematically
breaking them into successively simpler parts and
understanding how these parts fit together locally. Thus,
we have different levels of understanding, and each of
these levels corresponds to an abstraction of the detail of
the level it is composed from. For example, at one level
of abstraction, we deal with an integer without
considering whether it is represented in binary notation
or two’s complement, etc., while at deeper levels this
representation may be important. At more abstract levels
the precise value of the integer is not important except as
it relates to other data.” [Knuth74]

The problems with building large software systems in the late
1960s prompted the study of how systems are produced. The
discussion at the 1968 and 1969 NATO conferences focuses on
process and abstraction. Suddenly there was a lot of thought
about how large systems are partitioned into parts and how
these parts are interfaced. Later research programming
languages such as Clu and Alphard incorporated the abstraction
idea and provided the ability to create component interfaces
stronger than “sockets” and “busses”. The result of partitioning
a system into parts became known as the architecture of a
system. Tools that produce code using software components
create system architectures either implicitly or explicitly.

System architecture is how a system is structured to perform its
function. For a specific system there is only one system function
but there are many architectures that can provide that function.

Program Transformations

The architecture is separate from function. The basic tenet of
good design is that a system architecture should follow the
decomposition of the system function. This technique breaks
down when we stop modeling the objects and operations of the
problem domain and start using known Computer Science
abstractions to model the problem. The closeness of the top
levels of architecture and function sometimes leads to their
confusion.

In Software Engineering there are two basic approaches to
developing system architecture: stepwise refinement [Wirth71,
Dijkstra69] and layers of virtual machines [Dijkstra68]. Strict
stepwise refinement stresses the decomposition of a system:

“A guideline in the process of stepwise refinement
should be the principle to decompose decisions as much
as possible, to untangle aspects which are only
seemingly interdependent, and to defer those decisions
which concern details of representation as long as
possible.” [Wirth71]

Strict stepwise refinement results in architectures that are tree-
like as functions are subdivided into separate subfunctions. The
module reference structure of a system produced using stepwise
refinement might appear as shown in figure 3.

Figure 3: Stepwise Refinement Architecture

Inherent in the stepwise refinement model is the assumption of
flexibility at the bottom of the architecture. The primary
constraining factors come from higher levels of abstraction.

Creating architectures from layers of virtual machines was
described by Dijkstra.

“Phrasing the structure of our total task [build a
multiprogramming operating system] as the design of an
ordered sequence of machines provided us with a useful
framework in marking the successive stages of design
and production of the system. But a framework is not
very useful unless one has at least a guiding principle as
to how to fill it in. Given a hardware machine A[0O] and
the broad characteristics of the final machine A[n] (the
value of ‘n’” as yet being decided) the decisions we had
to take fell into two different classes:

1. we had to dissect the total task of the system
into a number of subtasks

2. we had to decide how the software taking care
of those various subtasks should be layered. It
is only then that the intermediate machines
(and the ordinal number ‘n’ of the final
machine) are defined.



System Architecture

Roughly speaking the decisions of the first class (the
dissection) have been taken on account of an analysis of
the total task of transforming A[O] into A[n], while the
decisions of the second class (the ordering) have been
much more hardware bound.”[Dijkstra68]

Following the above prescription results in architectures that
have some functional decomposition but are primarily
organized as layers of implementing function. The module
reference structure of a system produced using layers of virtual
machines might appear as shown in figure 4.

Figure 4: Levels of Abstraction Architecture

Inherent in the layers of virtual machines model is the
assumption of flexibility at the top of the architecture. The
primary constraining factors come from lower levels of
abstraction.

Stepwise refinement focuses on creating architectures as the
functional decomposition of the system function. It partitions
the call graph of system modules vertically. The layers of
virtual machines approach focuses on creating architectures that
provide strongly defined layers of abstraction. It partitions the
call graph of system modules horizontally. Though these two
approaches to architecture are opposed (one suggesting vertical
partitioning and one suggesting horizontal partitioning) there is
agreement. Both approaches stress the need for encapsulation
and simply suggest two methods for determining the next unit
of encapsulation.

Real programs of course use both methods and result in module
reference structures that might appear as shown in figure 5.

Figure 5: Real Program Architecture

Later work [Parnas72] introduced the principle of maximal
“information hiding” as a criteria for determining which
approach to use in the successive steps of developing an
architecture.

The reader may ask “What does all of this discussion about
architecture have to do with generating software using software
components?” The ability of a program generation system to
produce variations in architecture indicates an ability to create
and use abstractions. Ultimately, all generated programs must
use abstractions imposed on them from the outside world (e.g.,
file systems, graphics systems, database systems). These
abstractions are not only useful for structuring the system but
they can also be used to explain the developed system to people.
I showed that changing the architecture of a system can
completely change the time and space characteristics of the
system function [Neighbors80]. This is not a big secret.
Programmers have been instantiating procedure bodies inline
for years to gain execution speed. For these reasons we should
be suspicious of program generation systems that only address
system function and don’t address system architecture. What do
they provide as an architecture?

Lessons from System Architecture Research:

1.  System architecture exists and it is separate from
function.

2. System architecture has a big impact on the
performance and maintainability of a system.

3.  Encapsulation mechanisms such as packages and
objects are used to create system architecture.

Large Systems

In Software Engineering there was a lot of discussion of how
abstraction and typing mechanisms would enable us to build
large (million source code line) systems. There was very little
examination of large systems to determine how the developers
of these systems had survived all these years without the new
abstraction mechanisms. After all, large systems did exist. How
did they get them to work?

My curiosity led me to specialize in Software Engineering
techniques applied to industrial large systems. The industrial
organizations tolerated me because I could translate proven
Software Engineering findings into the organization.
Organizational infrastructure issues such as coding standards,
lifecycle models, management tools, document control, version
control, and configuration management are vital for industry. At
the same time I made it an issue to talk to everyone involved
with a large system and to scan the actual source code of the
systems.

It is impossible to examine the source code of a large system by
hand. A million line system may have as many as 8000
modules! Examining 40 modules per day (5000 lines per day) it
would take a complete year to examine each module. Large
systems are usually old systems. It takes a long time for a
system to grow to a million lines. Typically a million line
system is between 15 to 25 years old. They are written in the
most widely used languages at the time, FORTRAN and
COBOL. For my examination of the structure of these systems I
use code auditing and source code scanners based upon

6 The Evolution from Software Components to Domain Analysis



metacompilers [Schorre64]. The source code scanners scan the
entire source code, write reports, and propose areas for code
auditing.

The developers of large systems get them to work by very
carefully controlling interconnections between components in
the system and the usage of global resources. Some global
resources are surprising. As an example if the system contains
8000 modules, the space of module names is controlled and has
a pattern. A module named MSRC10 might be a module that
deals with receiving (RC) messages (MS) of type 10. The
obvious solution to this problem is to allow larger names. If you
do this the programmers concatenate architectural structure
names onto the routine names. This is fine while the architecture
does not change. When the architecture does change no one
wants to go back and change all the now misleading names.
Increasing the size of names does not improve the name space
problem.

Consider the interconnection in figures 6 and 7 drawn from a
group of three systems (about 4 million source lines in 11,000
modules) in FORTRAN and Pascal. The bars represent the
range and median values on the logarithmic percentage scale.
The architectures of these large systems are very vertical.
Figure 6 indicates that more than half of the modules in a large
system only exist in the context of the one module that calls it.
This provides a strong clue to the problem of understanding
large systems. Establishing the context of each module and
conceptually collapsing modules that exist only in the context of
one module will enable us to conceptually remove more than
half of the system modules!
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Figure 6: Number of Calls From Other Routines

The number of calls to other routines continues the careful
partitioning of a large system. Figure 7 indicates that about half
of the routines only call three or fewer routines. These systems
contain thousands of modules. Clearly the tradeoff between
using a part of the “name space” to create a new routine and
encapsulating information in routines is taken very seriously.

Large systems are rare. They are evolutionary survivors. For
each 20 year old large system there were many competing
systems that could not grow to this size. These systems are

Large Systems

expensive to maintain and evolve. I have found that one
programmer is required for each 10,000 to 30,000 lines of
source code. At a burdened man-year cost of $90,000 to
$150,000, a million line system costs between $3 million and
$15 million per year to maintain. These systems must earn their
keep every year or die. They are kept alive by careful
partitioning of the system functions and maintenance of the
partitions.
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Figure 7: Number of Calls To Other Routines

Sometimes the development of a large system gets out of
control. This manifests itself in a variety of ways:

e Inability to add new features.

e Inability to correct errors without introducing errors
(critical mass).

e Inability to get a consistent build of the entire system.

e General agreement that the system is a “spaghetti
code mess.”

It is surprisingly easy to bring such a system back under control.
First, no system gets to be this large while truly being a
“spaghetti code mess.” The developers are really saying that
they do not understand how the system fits together anymore.
The steps to bring the system under control are:

1.  Make sure there is about one programmer per 20,000
lines of source code.

2. Identify tightly coupled modules in the source code.
The coupling should include definition, control, data,
and message coupling.

3. Form these tightly coupled modules into subsystems
and identify the subsystem’s interface and
responsibilities to the rest of the system.

4. Assign 10,000 to 30,000 source code lines worth of
subsystems to each programmer.

I have found that even though there is a constant lines of code
per programmer ratio the programmers are not assigned specific
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sections of code approximating this size. Instead the systems are
loosely divided into five to ten large chunks. A programmer is
expected to work in two or more chunks. This provides the
management with the security that the loss of a single
programmer does not leave any codes uncovered. This costs the
management in that the programmers must fall back into a kind
of large system “maintenance programming.” This form of
programming carefully brackets changes by IF-THEN clauses
to make sure that the change doesn’t introduce errors. The
programmers do not understand the context in which each code
is called. After many years of this kind of change, the systems
are very hard to understand.

Assigning a subsystem with an explicit interface to an
individual programmer changes the programmers’ outlook on
the code. From the interface definitions and interconnection
analysis the programmer knows the context in which each
routine is called. The code actually begins to shrink as special
cases built into the code over the years are identified as no
longer in use (dead code) and removed. A “pride in ownership”
sets in as the programmer realizes that if he carefully cleans up
his subsystems it will make his job much easier. He, personally,
will benefit from this work. This is a powerful new incentive.

Massive change occurs in large systems. A large percentage of
the modules are changed every year by the supporting
programmers. It is the trick of large system management to
harness the massive change to improve the system. I have found
assigning subsystems to individual programmers to be
successful in achieving an improvement in system structure and
reliability.
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What do these subsystems look like? Once again this is not very
surprising but they look like small systems embedded in a large
system. The subsystem is partitioned by both decomposition for
its interface function and layers of abstraction for utility
support. Figure 8 shows the structure of a typical subsystem.
The structure of a large system is very vertical except for global
routines that manage the database. It seems that all large
systems are database systems because the data they manage is
too large to fit into main memory. The database routines are
always the most called routines in a large system.

Once we have partitioned our system into subsystems and
assigned them to individual programmers is our large system

under control? Well, no it is not yet. Extremely large systems
are over 10 million source code lines and over 30 years old.
Systems of this size contain hundreds of subsystems. Each
subsystem makes its interface public but we do not want just
anyone calling a subsystem. New module encapsulation
schemes such as Ada packages and Object-Oriented
Programming (OOP) do not suffice to build large systems. Both
are valuable encapsulation mechanisms and should be used to
define global system resources. However, they only provide
information about the resources. Once an object or package is
declared any other object or package may use it. All system
resources become global. Both of these encapsulation
mechanisms have difficulty with global issues. The Ada
package users have run into the problem of having to form
multiple packages into higher level groups to provide an
abstraction.

“Packages are a necessary mechanism in the
decomposition of Ada systems...However, packages are
not a sufficient mechanism for decomposition or
reusability. The reason for this is that there are some
abstractions that are simply too intellectually large to be
conveniently captured in a single package.” [Booch87,
pg. 556]

Similarly, OOP does not discuss how descendant objects are
constrained. As an example, all graphic objects must have a
method of rendering, but it cannot be inherited since there is no
global method of rendering for all graphics objects. Any
inheritance here is an error. We must define a graphics object
that requires all descendant graphics objects to define their own
rendering. This is a global resource required of all graphics
descendant objects.

OOP and package-like encapsulations do not provide
information about the control and flow of resources in the total
system. Module Interconnection Languages (MILs) were
designed to provide this important architectural function for
systems with many subsystems [DeRemer76, Cooprider79,
Tichy79, Prieto-Diaz86]. MILs form the resources presented by
the subsystems into an architecture for the overall system. MILs
are based on the difference between programming-in-the-large
(PL) and programming-in-the-small (PS).

“Structuring a large collection of modules to form a
system [PL] is an essentially different intellectual
activity from that of constructing the individual modules
[PS]’ [DeRemer76].

Architects of a large system are primarily concerned with the
process of composing system modules rather than with the
process of programming each module.

PS is concerned with building modules using conventional
programming languages. It focuses on how a particular part
(module) of a system performs its function. PL is concerned
with building systems. It focuses on how the system modules
cooperate (through calls and data sharing) and what functions
each module provides. The MIL specification of a system is a
formal written description of the system architectural design. A
version of the system must conform to this description before it
can be constructed. A maintenance programmer cannot
knowingly or unknowingly violate the system design without
explicitly changing the system design.

8 The Evolution from Software Components to Domain Analysis



The MIL specification of a complete system must include three
items:

1. A PS (programming language) description of each of
the modules in the system.

2. A PL (MIL resource language) description stating the
resources provided and required by each module in
the system.

3. A PL (MIL interconnection language) description of
the resource flow between the constituent modules of
the system.

In a MIL description, resources are any entity in a PS
programming language (e.g., variables, constants, procedures,
type definitions, etc.) that can be made available for reference
by other modules. Many modern PS languages bundle this PL
resource information with separately compilable units
(packages, modules). This may prohibit PL interconnection
checking without PS information.

An example of a MIL description of a module is shown below.
Declarations such as module, function, and consist-of
are part of the MIL syntax. Note that the MIL description code
for XA and YBC could be written separate from the description
of ABC.

module ABC
provides a,b,c
requires x,y
consist-of function XA, module YBC
function XA
must-provide a
requires x
has-access-to module Z
real x, integer a
end XA
module YBC
must-provide b,c
requires a,y
real y, integer a,b,c
end YBC
end ABC

The subsystems derived from large systems should be cast in
this form to guarantee the validity of the system architecture
during maintenance.

People have found the concept of subsystems to be important in
large system development. As with modules and other
encapsulation mechanisms, this concept should be an important
aspect of architecture for a tool that builds large systems out of
software components. In fact, as with hand-built systems, the
tool might find predefined subsystems a useful method of
reasoning about the system under construction.

Lessons from Large System Research:

1. To learn about large systems you must actually look
into large systems. Primarily large systems of a
million source lines or more are found only in
industry. Experience with 10,000 source lines and
below does not translate well into the large system
arena.

2. System architecture is very important in large
systems. Programming-in-the-small structures (OOP,
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packages, modules) are different from programming-
in-the-large structures (MILs). MILs are required to
control the use of encapsulated abstractions.

3.  Subsystem architecture erodes as the system is
maintained. Finding existing components in a large
existing system must deal with this issue. Bringing
large system development under control entails re-
establishing the architecture and assigning
responsibilities with respect to that architecture.
Assigning subsystems with established and
defensible interfaces to individual programmers
promotes pride in ownership. The method harnesses
the force of change on the system.

4. A mechanism that constructs systems from reusable
components must address the issue of architecture.
Architecture can drastically change the execution and
space requirements of systems.

Automatic Programming and Program
Generation

I became interested in automatic programming and program
generation because these areas took the idea of levels of
abstraction right up to the user’s problem domain.

“A model of the problem domain must be built and it
must characterize the relevant relationships between
entities in the problem and the actions in that domain.”
[Balzer73]

Software Engineering explained the idea of abstractions and
decomposition much better than Artificial Intelligence described
the partitioning of knowledge nets. Software Engineering then
focused on the lower-level bottom-up abstractions such as
abstract datatypes. Artificial Intelligence focused on high-level
top-down abstractions such as relationships in the real world.
Software Engineering generated layers of abstraction (abstract
datatypes) and automatic programming generated
decompositions (instantiated knowledge nets).

I was very much impressed by the power of program
generators® that actually produced successful application
programs from high-level domain-specific descriptions of the
problem. Program generators are very narrow in their scope of
application — usually business data processing in COBOL. They
rely on a broad rigid model of the problem domain with a very
simple mechanism to assemble the resulting code. Often simple
conditional macro expansion from an assembler is used! The
knowledge about the problem domain is held as text strings in
macro bodies. This is similar to the “sysgen” procedures of
early operating systems.

The power of program generators was not lost on the automatic
programming community.

“The people who work in this area [automatic
programming] fully realize that for practical solutions,
their ideas will have to be combined with those of the
first type [program generation], incorporating specific
knowledge of the domain being treated.” [Feldman72]

2. Program generators were later to be known as 4th Generation Languages (4GLs).



Automatic Programming and Program Generation

From a formal theory standpoint automatic programming had
been shown to be a solvable problem [Green69] using theorem
proving. However, the computational complexity of theorem
proving makes the technique impractical. This early experience
with formal theory complexity problems may have pushed
automatic programming towards knowledge-based approaches.

To me this was a quandary. On one hand program generation is
the most powerful technique for generating software. It is a
knowledge-based technique that uses a rigid model of the
problem domain. Program generators use very simple
mechanisms to construct the software and actually construct real
software systems. On the other hand automatic programming
techniques use very flexible knowledge representations and very
complex planning mechanisms. Their mechanisms extract
details from the knowledge net to produce small toy programs.

Knowledge specific to the problem domain is very powerful. It
is better to have specific knowledge about the problem domain
and a weaker mechanism than a more powerful mechanism and
general knowledge. We saw the same effect in program
transformations. Most current automatic programming research
still prefers to focus on stronger mechanisms and general
knowledge schemes.

Lessons from Automatic Programming Research:

1.  Problem domain specific specification languages are
successful and very powerful. Program generators
and 4GLs prove this and are widely used.

2.  Domain-specific knowledge-based systems with
weak mechanisms have been more effective than
strong mechanisms (theorem proving, planning) with
weak (general) knowledge bases.

3. The power of the refining (component assembly)
mechanism must be carefully balanced against the
ability to plan refinement using the mechanism.

Methodology

Our goal is to construct software using components. We need to
form the lessons from the techniques we have examined into
requirements for a tool that will do this. The primary
requirements and their rationale are listed below. Each
requirement lists the concept and section in this paper that
motivates the requirement.

Requirements(motivation):

1. The tool must accept a description of the objects and
operations of a problem domain (domain analysts
from software components; decomposition from
system architecture; knowledge-based power from
automatic programming).

2. The description of a problem domain must be
described in terms of problem domains already
known to the tool (decomposition and layers of
abstraction from system architecture).

3. Optimizations are characterized and performed at
each layer of abstraction (optimizing information loss
in refinement from program transformations).

4. The burden of search for either implementations
(refinements) or optimizations must not be placed on
the end user. The tool must suggest implementations
and optimizations in the context of the problem
(library problem from software component libraries;
picking the right transformation from program
transformations).

5. The implementation and optimization mechanisms
must be computationally tractable so higher-level
plans may understand and use their power (simple
mechanism capability from program generation;
planning from automatic programming).

6. The implementation (refinement) mechanism must
provide a wide variation in system architectures to
produce a wide variation in time-space tradeoffs in
the resulting systems (performance and architecture
from system architecture; importance of system
structure from large systems).

7. To build large systems and partition system
construction, the tool must characterize and generate
code that interfaces to existing pre-refined systems
(tedium of applying transformations over and over
from transformations; the existence of subsystems
from large systems)

To address these requirements we have proposed a different
methodology of building systems. This has been called the
“Draco Methodology” after the first system that we built that
used this approach [Neighbors84a, Freeman87]. The
organizational dataflow of the method is shown in figure 9.
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Figure 9: Draco Methodology Dataflow

Using this method we capture a model of a class of systems
from the “Application Domain Analysts” who know how
application systems of the type are constructed. This is coupled
with modeling techniques drawn from Computer Science as
understood by a “Modeling Domain Analyst”. This top-down
and bottom-up information is combined by a “Domain
Designer” to specify a problem domain to the tool. An
individual system is specified by a “Systems Analyst” by stating
the needs of the specific system in a problem domain known to
the tool. If this cannot be done, then the method fails.
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In this section we will briefly describe the results of domain
analysis and domain design that must be given to the Draco tool
to specify a complete domain. These are given in more detail in
[Neighbors89, Neighbors84a, Neighbors84b, Neighbors80].
There are six parts to a domain description:

Parser
The parser description defines the interface between the
domain and the mechanism. There are four parts to the
parser: external syntax (BNF), semantic checks, internal
form tree, and database schema for the domain.

Printer
The printer description defines how to communicate
domain-specific information to the user. This is necessary
for the mechanism to be able to interact with users in the
language of the domain and discuss the developing
system.

Optimizations

The optimizations represent the rules of exchange
between the objects and operations of the domain.
Optimizations only work within the domain. There are
three parts to the optimization specifications: source-to-
source optimizing rules, source-to-source optimizing
procedures, and optimization application scripts. The
optimization application scripts are plans of optimizations
defined for the domain. Optimizations are guaranteed to
be correct independent of any particular implementation
(i.e., component refinement) chosen for any object or
operation in the domain. This can be guaranteed since
optimizations do not cross domain boundaries.

Components

The software components specify the semantics of the
domain. There is one software component for each object
and operation in the domain. The software components
make implementation decisions. Each software
component has one or more refinements that represent the
different implementations for the object or operation.
Each refinement is a restatement of the semantics of the
object or operation in one or more domain languages
known to Draco. Thus, component refinements cross
domain boundaries.

Generators

Generators are domain-specific procedures that are used
in circumstances where the knowledge to do domain-
specific code generation is algorithmic in nature. This is
similar to program generators. The generated programs
are kept in the internal form described by the parser
description. The construction of optimal hash functions is
an example of a generator.

Analyzers

Analyzers are domain-specific procedures that gather
information about an input instance of domain notation.
The information is kept in a database under the schema
defined in the parser description. Dataflow analyzers,
execution monitors, theorem provers, and design quality
measures are examples of analyzers. Their results are
used to check preconditions on refinements and
optimizations. They also provide guidance information
for user interaction during development.

Methodology

Thus, the basis of the Draco methodology is the use of domain
analysis to produce domain languages. Once a statement in a
domain language has been parsed into internal form the
following actions may be applied to the internal form.

1. Print the internal form into the external syntax of the
domain.

2.  Optimize the internal form into a statement in the
same domain language.

3. Input the internal form to a program generator that
restates the problem in the same domain.

4. Analyze the internal form for possible leads for
optimization, generation, or refinement.

5. Implement the internal form using software
components each of which has multiple refinements.
Refinements make implementation decisions by
restating the problem in other domain languages.

For every problem domain there is a different textual language.
People deal with jargon and notation all the time. It is the
experience of automatic programming that people have no
problem learning a new notation if it helps to solve their
problem.

“There are many large groups of computer users who
would be willing to use an artificial language if it met
their needs.” [Feldman72]

Domain-specific artificial languages like SQL and BNF are
easily understood once their notations are defined. The Draco
methodology exploits this uniquely human language capability.

“It is a frequent misunderstanding that there is a separate
category of languages called application-oriented. In
reality, all languages are application-oriented, but some
are for larger or smaller application areas than others.”
[Sammet76]

Using specialized languages is an alternative to using program
libraries. The languages serve as a general description that
limits how the software components of the domain may be
combined. Consider FORTRAN not as a programming
language but as a surface description scheme for combining the
software parts that make up the FORTRAN run-time library.
Would FORTRAN have been nearly as successful if it had been
presented as a “library of interesting and useful numeric input,
calculation, and output routines with descriptions”? A library
would not have been as successful because the burden of using
the library and knowing the interconnection limitations is placed
upon every potential user of the library. Having a domain-
specific language that ties the library together removes this
burden at the expense of learning the language.

It is easiest to think of the Draco refinement mechanism as the
simple macro expansion of a program generator and the
optimization mechanism as simple source-to-source
transformations applied to domain-specific languages. To
provide variable system architectures and consistent
implementation choices, some complexity must be added to
these mechanisms [Neighbors80]; but these simple models of
the mechanism serve to judge the power of the technique.
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Experience

Most of the practical experience with these techniques comes
from experiments with a prototype system called Draco
[Neighbors84a]. Referring to figure 9 we have been fortunate to
have a few people try their hands as “Application Domain
Analysts.” Some of the results have been published
[Gonzalez81, Sundfor83a, Sundfor83b]. Mostly application
domains have been created by people from industry interested
in a particular application problem. Although these experiences
have only occasionally resulted in working small application
programs’ I can say that the technique has been a success. The
technique has been a success because in every case the analyst
has come away from the domain analysis process with an
improved understanding of the parts of a system that make up a
solution system in the problem domain. This improved
understanding comes from considering the problem independent
of implementation or architecture. More recent work [Dunn91]
proves the power of application domain analysis to describe
classes of systems.

We have been less successful in interesting people to try being a
“Modeling Domain Analyst.” In my dissertation [Neighbors§0]
I tried out the idea of modeling domains using Draco. The idea
appeared to work and brought out a lot of interesting issues
about maintaining consistent implementations during
refinement. Draco was used as a mechanism to convert itself
from one computer to another [Arango86]. This was a
translation from one level of abstraction to the same level of
abstraction. The idea of “modeling domains” was not severely
tested. The concept of modeling domains is strongly supported
by the work of Batory [Batory88]. This work describes a
hierarchy of modeling domains that supports the construction of
database systems with widely different features. Considering
that a database system has been the core of every large system I
have examined this is clearly a complex and important set of
modeling domains. As with application domains I would think
our experience with modeling domains a success because in
every case the modeling domain analyst has come away from
the experience with a better understanding of the domain. For
modeling domains this improved understanding comes from
considering architectures and implementations without
expanding the function of the domain.

We have done a lot of work on the models and mechanisms for
constructing systems using transformational implementation
methods. The Draco methodology [Neighbors80] is an instance
of such a method. Prieto-Diaz [Prieto-Diaz85] studied
organizational schemes for libraries of software components.
This technique has an immediate payoff for organizations and is
a good place to start. Ultimately the library problems discussed
earlier will limit this approach. Arango [Arango88] developed a
model for classifying and discussing methods of this kind.
These models make clear what kind of knowledge these types
of methods use and how it is used. Baxter [Baxter90] studied
the problem of re-implementing a particular system developed
under this method if the system specification changes. No
method of this type will be a success without a solution to this
problem because the system specification will change. Finally,
Srinivas [Srinivas90] considered methods for capturing the
description of a domain as a formal algebraic theory. The rigor

3. By small programs we mean 2000 to 5000 source line programs. These are toy
programs with respect to the large systems at which these techniques are aimed.

of a formal method would certainly be welcome over the
informal way we combine domains now. However, it must
avoid the notational problems and computational complexities
that prohibited previous formal methods from succeeding.

A message of this work is that neither sophisticated Artificial
Intelligence planning mechanisms nor formal theory proof
mechanisms are required to improve the productivity of
programmers. Often we have consciously avoided the use of
such mechanisms to reduce the burden on the tool user who just
wants a working program out. Program generators are the
extreme example of this. We cannot expect the tool users to give
advice to complex Al planning mechanisms they did not create
or provide statements in a formal algebraic theory they did not
produce. The Draco Methodology is an extremist knowledge-
based approach. It consciously trades domain-specific
knowledge against powerful general mechanisms. Simple
mechanisms and encapsulated domains will allow the use of
higher-level sophisticated planning techniques to refine specific
problems once a critical mass of problem and modeling
domains is available.

Lessons from Using a Prototype System:

1. Programs refined this way are very efficient.
Optimizing transformations applied at a level of
abstraction above common programming languages
are the key. These are seldom discussed in the
literature because the abstractions (through domain
analysis) are hard to determine and not usually of
general interest.

2. After doing many examples consisting of the
application of thousands of optimizations and
component refinements it becomes clear that the
ability to use subsystems consisting of pre-optimized
and pre-refined parts of existing domain hierarchies is
important. For large modeling domains such as
database concepts it is important that a system-
specific implementation can be refined by the system.
However, most of the time you would not want to
refine the default, general version of a database in
detail.

3. Academics are generalists. As generalists they prefer
to work on the general part of the problem, the
refinement mechanism. They are not really motivated
to produce application problem domains that test their
mechanisms.

4. Industry causes people to specialize. As specialists
they prefer to work on the domain specific part of the
problem, the application domains. They are not really
motivated to change the mechanism. The mechanism
must be understandable and produce real software.

5. No one wants to make modeling domains. For
industry, modeling domains do not directly apply to
the problem at hand. For academia, producing a
modeling domain does not add any “new”
knowledge. It simply structures what we already
know.

Academic and industry cooperation is clearly required to
produce useful application domains that rely on strong, general
modeling domains.
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My experience is that the structuring of what we already know
has produced some of the very best work in Computer Science.
The process of structuring the knowledge points out what we do
not know. Compilers and operating systems are old examples of
this process. These areas started as collections of ad hoc
engineering artifacts. They currently stand as general
architectures backed by formal theory and described in
textbooks. This is the evolutionary path for a modeling domain.
Producing a general architecture and related formal theory for
areas that are less evolved, such as databases and networks, is a
difficult task.

Conclusions

The concept of “Domain Analysis” has been embraced by many
for quite a few different reasons [Prieto-Diaz91]. Domain
analysis results provide an organization with the following
capabilities:

e  Use the domain model to check the specifications and
requirements for a new required system in the
domain.

e Educate people in the organization providing them
with the general structure and operation of systems in
the domain.

e Derive working systems directly from the statement
of the system in domain specific terms.

I concentrate exclusively on the derivation of working systems.
I have completely ignored the other uses. I see the effects, but I
do not focus on them. Other research groups are beginning to
investigate the important educational and quality aspects of
domain analysis [Prieto-Diaz91]. I am glad that the knowledge
of the “old hand” Domain Analysts has been acknowledged.

Currently there are large military and industrial research efforts
specifically aimed at application domain analysis. These will
have to deal with the lack of modeling domains or turn into
simple program generators. There are large academic research
efforts to develop new mechanisms for refinement and
transformation. These will have to deal with planning using a
complex mechanism and computational complexity.

We have tested a simple method for software construction using
components that is derived from the literature and industry
experience. It works. Using this method Mcllroy’s software
component factory problem turns into a domain hierarchy
construction problem. This is a much harder problem. Early
enthusiasm came from simple operations (sorts,
transcendentals) on simple objects (numbers). These are not the
big system problem. The big system problem is refining big
complex systems that deal with big modeling domains like
databases, operating systems, communications, and graphics. It
is imperative that work which forms modeling domains from
the existing Computer Science literature and practice be
recognized as an important contribution. Without strong
modeling domains the vision of software construction using
components will go no further.

Experience
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