The Evolution from
Software Components to Domain Analysis

James M. Neighbors
System Analysis, Design and Assessment
Costa Mesa, California
USA

Goals

e Produce large, quality software systems.
e Build systems from reusable software components.

e (reate systems that may be extended and maintained
over a lifetime of many years.

Software Components
e Mcllroy at NATO68

e craftsman vs. mass-production

e system size forces reusable components

SADA/2

Areas of Investigation and Experience

e software components

e program transformations
e system architecture

e Jarge systems

e automatic programming and program generation

SADA/3

Software Part Libraries
e reuse without modification (““what” information)

— classification problem
— search problem

¢ reuse with modification (“how” information)

— structural specification problem
— flexibility problem

e overall library problem

— many small parts for flexibility increases search

— few large parts decreases search and decreases
flexibility

SADA/4

Lessons from Software Component Libraries
e libraries are an immediate success
e libraries have been a success for years

e simple flat libraries do not scale up (sorts, lists, etc. are
not the problem)

¢ domain-specific parts from domain analysts are powerful

SADA/S

Program Transformations

e motivation: store fewer source programs and specialize

e cxample transformation
LHS: X*(IF P THEN A ELSE B) <=>

RHS: (IF P THEN X*A ELSE X*B)
EC: X and P are execution order independent

¢ matrix multiply example in paper

e refinement example

one
X'"2———~———>X"‘X
refine
refine
level
not of
possible refinement

T S

e formal algebra theory

SADA/6

one

transform
X**2 » X*X
ofine refine -
not
possible
v ./ many
Bin ry transforms Tayl or
Shitat Expansion

Method

level
of
refinement

Lessons from Program Transformations
e few equivalence preserving transformations
* optimization at appropriate level of abstraction
¢ idea of a domain to encapsulate level of abstraction
— semantics independent of implementations

— optimizations independent of implementations

SADA/7

System Architecture

e motivation: how to encapsulate system and domain
information

e architecture is distinct from function

e stepwise refinement vs. levels of abstraction

i 5|

v

lwd Levels of Abstraction ":'
retement (topdounmmd) (bottiom up development) sbevecton
real systems use both

e vertical partitioning vs. horizontal partitioning

¢ dynamic creates cells of encapsulation

SADA/8

Juisl
Fhight dy A
| b dh 4 4 |

lovel Stepwise Refinement - Levels of Abstraction of

refinement (top down development) (bottom up development) abstraction

real systems use both

Lessons from System Architecture
e exists and is separate from function
e big impact on performance and maintenance
¢ result from encapsulation mechanisms

¢ methods that assemble systems from components must
also create architectures

SADA/9

Large Systems

motivation: how do they get them to work?
scale, nature and location

research method

interconnection results

identification of subsystems using coupling and cohesion

N
)=

T |
fdaoogdop) = s
(| (-
AN\ Qi ——

to enclosing utilities

e establishing control

SADA/10

Calls To Other Routines

1005
: 75% of routines call 7 or less routines
1mrrr-
—_ - .
o)] F F 1
L Fy
hn] |. |_
o - i
9 TR - ,
w1 e e
3 3 o
g :
o -
oC i
P

50% of routines call 3 or less routines

o

-

] 1 1 11111l

L
-T

L
- T
T

- 1

- 1

- T

0.01 1 | | I | | | | i | 1 | 1) | |
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Calls To Other Routines

Calls From Other Routines

100

T

60% of routines called by 1 or less routines

-

=9
1 lllllll?

3 / 90% of routines called by 6 or less routines
-

r

% Routines (log scale)
1 . | lll-r
-
=T

o
b

] 11 11t

r[rrrk[-r

Lean

0.01 | | | | | | 1 I 1 1 | | | | | 1 | |
0 2 4 6 8 10 12 14 16 18 20 22 24 26 29 31 34 38 41
Calls From Other Routines

| Subsystem

e //j 7N

L\

—

global
data

//\ \\\

to enclosing utilities

interface
routines

functional
decomposition

functional

| agents

utility

routines

= routine, 20—150 in a subsystem

average about 35

%DOWN, =UP

ENTER ROUTINE (IN SINGLE QUOTES),

Lal
Ltnargl
T
.y
N er——

v

b e

f

[==
Y gy

'y
L

g
1

-

[T i

I

re- s

L

- T
fp =
L SO,

)

——

-
—— -
Famn ~mm
"earv—p
2 Teoenn
M e—
“cmap
T
e
ey
b mm
=
T, M.
——
iy Sma—
b
ey
— T
“e—
b
oo,
™Y
-, —nrwny
T
™

l
:

|
}

!
i
i

i1

L

i

f

"

e cstablishing control of a large system

— staff level: 20K lines source per programmer
— identify tightly coupled modules
— form tightly coupled modules into subsystems

— assign 10K-30K source lines in subsystems to
programmer

¢ module interconnection languages (MILs)
— PS programming language
— PS resource description language

— PL resource flow language

SADA/11

Lessons from Large Systems

e system architecture important for extension and
maintenance

¢ issues change from small systems
e MILs are required and usually custom made

e subsystem concept must be used in assembling systems
from components

SADA/12

Automatic Programming and Program Generation

e motivation: techniques and effects of very high levels of
abstraction

e automatic programming: strong mechanism, general
knowledge

e program generation: weak mechanism, problem domain
specific knowledge

SADA/13

Lessons from Automatic Programming and Program
Generation

¢ domain-specific languages an aid, notations not a
problem

e domain-specific knowledge with weak mechanisms
powerful but inflexible

e general knowledge with strong mechanisms weak but
flexible

e power of assembly mechanism must be balanced against
the ability to plan using the mechanism

SADA/14

Methodology Requirements

1.
2.

SADA/15

problem domain specific objects and operations
hierarchy of domains (modeling domains)

optimization in domain independent of refining
implementations

burden of search for implementing components removed
from user

simple optimization and refinement mechanisms

refinement mechanism must also provide good system
architectures

refinement mechanism must cope with pre-refined large
subsystems

Organizational Flow using the Methodology

software Q@

Literature Eie:\l;'qug’nwm Modeling 'ng}g?
Domain
(l)%?\ Analyst Q)‘%
eneral — E‘ tergnnected
N Roods N Domain structure
=y =y timPesigner
; A T . domains
pplication Machi
Q)‘é Domain "
~ Analyst
Users of Draco

available
domains

. . executable

Similar Systems system

domain language
description

2\ 7\ and refinement info
1> needs for a 025 frunctonar| {2
specific system requirements
User with a Systems Systems
Specific System Analyst Designer

Need

SADA/16

DESCRIPTION OF A SYSTEM
WHICH PRODUCES FORMATTED

STATISTICAL REPORTS
|
|

STATISTICS
REPORTING
DOMAIN

’ STATISTICAL CALCULATION
DOMAIN (EXPANDED TO SHOW
DOMAIN STRUCTURE)

SURFACE LANGUAGE
PARSER \ SOURCE-SOURCE

REPORT
FORMAT
DOMAIN

AND TRANSFORMATIONS
PRETTY-

" PRINTER COMPONENTS

X O 004

REF INEMENTS “

DRACO

ALGEBRAIC
CALCULATION

DOMAIN TRANSFORMATION

X2 = XaX

OPERATING
SYSTEM
DOMAIN

EXECUTABLE
LANGUAGE
DOMAIN

v

EXECUTABLE CODE

HOW DRACO WORKS

Parts of a Domain Description

1. parsef and schema
2. printer
3. optimizations

4. components

— one for each object and operation

— multiple refinements (implementations) for each
5. generators

6. analyzers

SADA/17

q931

EM\APPCASE\BK091991N\TEMP.PDL Page 1

{ InitialsState = U0O_Null; [Q.931 User Side FSM]

U00_Null

recv(Resume,user) -> CallRefSelection,
send(Resume,net), StartTimer(T318) >> Ul7_ResumeReq;
recv(SetUp,net) -> CheckSetUpMsg {

SetUpOk -> send(SetUpInd,user) >> U06_CallPresent;
SetUpManElementMissing -> send(ReleaseComp(96),net) >> = ;
SetUpManElementError -> gsend(ReleaseComp(100),net) >> =

}i
recv(SetUp,user) -> CheckSetUpMsg {
SetUpOk -> CallRefSelection, send(SetUp,net),
StartTimer(T303) >> UO1l_Calllnitiated;
SetUpManElementMissing -> send(ReleaseComp(96),net) >> =;
SetUpManElementError -> send(ReleaseComp(100),net) >> =
}:
recv(Status,net) -> CheckStatusCsField {
CsZero -> nullaction >> =;
CsNotZero -> RelOption {
RelOpt -> send(Release(101),net), StartTimer(T308)
>> Ul9_ReleaseReq;
RelCompOpt -> send(ReleaseComp{101),net) >> =

}:
recv(Release,net) -> send(ReleaseComp (0),net), RelCallRef >> = ;
recv(ReleaseComp, net) -» nullaction »> = ;
timecut (default) |
recv({default,user) |
recv{default,net) |
recv{UnrecognizedMsg,net) ->
RelOption {
RelOpt -> send(Release(81),net),
StartTimer(T308) >> Ul9_ReleaseReq;
RelCompOpt -> send(ReleaseComp(81),net) >> =

recv(StatusEnquiry,net) -> send(Status(0),net) »> = ;

recv(RestartReq, user) -> restartuser: StopAllTimers,
send(ReleaseInd, user), RelCallRef,
send(RestartConf,user) >> UOO_Null;

recv(DL_Rel_Ind, net) -> nullaction >> = ;
recv(DL_Est_Conf,net) -> goto DLEstConf_label;
timeout (T309) -> t309tout: send(DataLinkFailureInd,user),

RelCallRef >> U00_Null

Experience with Methodology

e works but has problems

¢ produces efficient programs making small (20K line)
systems

e pre-refined major subsystems are important

¢ ability to refine major subsystems is important
e academic generalists

¢ industry specialists

e future work

SADA/18

Conclusions
¢ Domain Analysis a big success
— process of defining problem domain
— education of new people on problem domain
— checking template for new systems
¢ Jack of modeling domains a big problem

¢ academic projects must deal with modeling domains
issue or face complexity failure

¢ industry projects must use modeling domains or risk
becoming program generators

¢ joint academic and industry work a necessity
— academics know modeling domains
— 1industry knows problem domains

e problem of constructing software from reusable
components has become the problem of constructing
modeling domain hierarchy

SADA/19

