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Introduction

The Irvine Program Transformation Catalogue

is basically a source book of ideas for improving programs.
By casual browsing, the reader may discover a number of
useful techniques for transforming programs into better ones.
When the moment comes to apply a particular fechnique, the

Catalogue can be referenced for details.

The ideas are presented in the form of.

source-to-source transformations. These transformations

show how to change source language programs in a given
form into improved source language-programs. Many of the
transformations are given aé.ggigg of éxChange of the form
P = Q. This is intended to follow conventional usage in
mathematics. For example, in algebra, we might find the
distributive law given in a form such as x ( y + 2 ) = xy + x=,
in logic, we might find a simplification law given as

b afb v ¢) = b, and in a table of integrals, we might find

a rule such as f uwdv = wv - fﬁ du . Each of these exchange
1éws.can be used to replace a given expression with an

equivalent one.

In a similar vein, we can specify exchange rules

for expressions used in computer programs. For instance, we




— = — =

might give a distributive rule involving conditional

expressions, such as

o+ (if b then y else z) = (if b then x+y else z+z)

To specify that a given exchange rule is intended
for use in a preferred direction, we write P => Q. For
example, writing ba(bve) => b signifies our preference

for replacing the more complex expression bAa(bVe, with

the simpler expression b, where possible.

Undér some circumstances, we might give separate
names to the same exchange applied in different directions.
For instance, =y + zz => x(y+z) might be called "factoring
out the mononomial x", whereas x(y+z) => zy + zz might

be called "multiplying through by x".

The use of the double shafted arrow { => ) in
place of the egual sign { '= ) can also help relieve possible
ambiguities in the transformation of expressions containing

the equal sign itself. For example, writing

| v
¢) and r/= d)

b =¢ =4 => (b

o
]
L]
il
a,
I
_
s )
it

e} and (e = d) .
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For this reason, we prefer to indicate bi-directional

exchange rules using a double-headed arrow ( <=> ) as in

z(y + 2 ) <=>2zxy + 2z .

Some transformations can be applied only under
special conditions. For example, provided ¢ # 0 we can
write 'ao => 1 . Sometimes, we state such conditions

formally as part of a transformation rule, as in writing

R
W
S

provided
a => 1 .

In this case the condition (a # 0) is called an enabling

condition.

Not all source-to-source transformations can be

‘conveniently stated as exchange rules. Sometimes it is

preferable to give a procedure for transforming a program

into another. This condition usually applies when we cannot

easily devise a simple syntactic “"pattern" to match situations

in which a transformation applies.

For example, one source~to-source transformation
of interest consists of removing "useless™ assignment

statements, which assign values to variables which are
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never subsequently used in a program. This process is
better expressed as a procedure with several steps than

as an exchange rule on various forms of programs.

Such procedures are program manipulating programs.
In this situation, programs constitute dual entities that
do the manipulating and are themselves maﬁipulated. This
requires introducing appropriate ﬁotational conventions to
distinguish between agents and_objects of actions. The
hdtiohs are introduced in the Catalogue as re@uired, and

a full explanation is given in an appendix.

Sometimes an idea behind a general principle'of

source-to-source transformations is given by example. Once the

example is properly understood, the general principle can

be applied in a large variety of circumstances.

For instance, (following [2]) consider searchiné a table T to see

if it contains an item X. Suppose the table has entries
numbered from I to ¥, signified by 7011, r[2], ... , TL¥].

A procedure to determine whether T contains X is as followss
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1 procedure Search(T,X}); local 1i;

2 begin

3 TN;

4 while i>0 do

5 2f Tli1]=X then Return(true) else i+i-1;
6 Return{false)

7 end procedure;

The "inner loop" of this procedure tests both whether >0

and whether 7T[1]=X¥ for each distinct value of 7 tried.

Suppose we extend ihe table 7 to contain a néw'
Oéth entry T[0], and we initialize this entry to
contain X. Whether or not X was in the original table T,
we can now be confident that ¥ is in the extended table.
The way the above procedure determines that ¥ is not in 7T is
is by determining that the table has been exhaustively searched
without having found any entry T[] containing X. However,
using the extended versién of 7 enables us to eliminate the

test for exhaustion, as seen in the following procedure:

1 procedure Search(T,X}; loecal 1;

2 begin TLO]1«X; i+N;

3 while T[1]1#X do t+i-1;

4 if i=0 then Return(false) else Return(irue)
5 end procedure; |
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This procedure runs faster and is syntactically simpler
than the previcus one because the test (2>0) has been

eliminated from the inner loop.

This specific program improvement is an example

of a general principle, which can be stated as follows.

Suppose you are searching to find whether a search space 8
contains an element X by systematically enumerating elements
of S in some prescribed order and comparing them to X. If you
extend S5 to includé one more element containing X, which

is guaranteed to be enumerated last in the particular order
of search used, then there is no need to test explicitly

for exhaustibn of the search space in yéﬁr algorithm. Instead,
. You can generate elements in the extended version of 8§ until
finding X, and then you can conclude X was in the original
unextended space S, if and only if it was not found in the

extension.

Onée this general.prinéiple has been understood
it can be applied not only to tables, but to search spaces
of many different shapes and oréanizations, such as binary
trees, list structures, and indexed files. Such a general

principle cannot be easily expressed as an exchange rule P => Q,
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because the many forms of programs P to which it applies

are not readily characterized as instances of a simple

&P
6;? 35;;: syntactic pattern P. ©Nor can we conveniently encode the
X
694§{§§i' general principle as a program manipulating procedure
d‘;ﬁ?{f because the variety of programs and data structures to
» 9

if@ which it applies is too large to yield easily compfehensible
vﬁ?gyp code, But we can express;such an idea by giving examples,
° and stating the general principle of which the examples are
qﬁgfﬁ“ instances. Given the nature of our current knqwledge of
computer science, the latter is the best choice available
to us for explaining such general program transformation

ideas to people (as opposed to machines) .

Thus, the transformations in the Catalogue are
given in three forms: (1) pattern-directed exchange rules,
(2) program manipulating programs, and (3} examples plus

discussion.

Using the Catalogue to improve a given program
may involve transformations at all three of these levels.
For example, after producing the improved search program

above, line 4 ( at the bottom of page 5) reads:

4 if i=0 then Return(false) else Return(true) .

(v B -~ B -~ B~ B - B B oo B wvoms B o B woss [ ~oms S e [ e

=



There are two pattern-directed exchange rules

that can be applied to simplify this statement, namely:

K/
, actonst K 8%

if b then F(e) else F(d) => F{ if b then c else d)

gimplifying conditionals f(see §3.1.bJ

tf b then false else true => ~b

Applying these transformations to line 4, yields the

fellowing sayxntﬂ cf transformations:

4 if i=0 then Return(false) else Return(true)

U

4 Return ( if i=0 then false else true )

4  Beturn(n(i=0))

This last result can be rewritten as Return{i#0) by x//

applylng the synonym transformation m(x—y) <=> (x#y)

Facility with the application of transformations

in the Catalogue may be gained through practice.



The transformations in the Catalogue are intended

to preserve program equivalence. In particular, this means

we can apply certain transformations only under particular
enabling conditions that guarantee equivalence. Two such
énablin§ conditions are of such general applicability, however,
that they desefve special mention in the introduction.

These are called commutativity and freedom from side-effects.

Let F be a well-formed program fragment (i.e. a phrase
in the grammar of the programming language at hand). Let
R(F) be the set of variables non-local to F that F either
reads but never writes or reads before writino, and
let W{F) be the set of non-local variables that F writes .
(whether or not it also reads tﬁem}. Hefe a local variable v in

F is a vVvariable used only within F amd not elsewhere in the program.

Given two program fragments A and B, we wish to
know when it is permissable to exchange their order of
execution from A;B to B;A while preserving program
equivalence. It is permissable for A and B to read the

same read-only variables, but neither A nor B may write into

variables the other reads before writing, nor may they write into

common variables. In symbols, A and B are commutative

provided that W(A)n(W(B)uR(B))=@ and W(B)n(W(A)uR(A))=@ .
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Whenever we are given a transformation that
implicitly changes the order of execution of some of
its constituent program fragments, the fragments whose

execution order is changed must be commutative. This

requirement is so pervasive that it is scarcely worth
mentioning it explicitly every time it applies. For example,

in the transformation:

a ; (if b then ¢ else d) => (if b then(a;elelse(a;d))

the order of execution of @ and b is implicitly changed,

so a and pmust be commutative. This would exclude transforming

z«3 ; (if z>u then y else &)

into
(if z>w then (x+3;y) else (x+3;z)

for instance.

If the program fragment F does not write into
any non-local variables (i.e. if W(F)=@ ), then we say

that F is side-effect-free. Some transformations preserve

program egquivalence only if one or more of the constituent
program fragments is side-effect-free. For example, the

McCarthy conditional transformation:

a Ab => if a then b else false

requires b to be side-effect-free in order to breserve

program equivalence, in general., TWS AssUMeS THAT

N3 { K : l.lﬁ A&B A S E"ECUTQD 3650353_
_TF we werents ASSOMING  an Qmoerll\-% !
00 THE EXECLTION ok AlB hexs ATB wouLb

HAVE TO COMMOUTE AND THE FRASMENT  NGT |
HAUES (o BE S\0E w+FELT FREE. (10 ALLOW

N THE F TV PREDICATE wovL P
SENErGh ConDITIONALIZATION)
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The Irvine Program Transformation Catalogue

originates from a current NSF research project at U.C. Irviné
on interactive program manipulation. We are trying to
understand how to program a computer to look at a given
program and to refine or improve it stepwise using

source-to-source transformations.

When we speak of stepwise refinement of a program,

we mean the following. Suppose P is a high-level program,

written without certain commitments to underlying data
representations. Suppose we apply transformations to P that
"£il11l in details" mechanically by supplying data representations
and generating associated lower-level program text so as

to ﬁrovide an implementation of P at a more concrete level.

This concrete version of P is said to be a refinement.

Experience shows that the text of programs generated
by mechanical refinement often requires improvement. Program
improvement consists of transforming a program to achieve-a
better appearance or better performance properties, perhaps

with the objective of meeting required operational constraints.

The Catalogue arose out of our attempts to describe
and classify a spectrum of source-to-source transformation

ideas we hope eventually to mechanize. We discovered,

=Ea BN o eEn BB BN O )OS OO

-
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coincidentally, that the Catalogue was a rich source of

ideas for people to use to improve programs manually.
It is also a beneficial pedagogical device to use to
provide beginning students with a stock of ideas and

technigues helpful for improving their programs.

‘While our basic research guest ié aimed at
mechanizing program refinements and improvements, one
of its early by-products seems already to be potentially
ﬁseful to students, educators, and, perhaps, practicing
professionals alike. This may represent an instance
where basic research spins off immediately usable

results, and we intend to pursue further its potential

benefits in these contexts.




l. Assignment Forms

1.1 Nested Assignment Introduction (=>) & Elimination (<=)

1.1.1 exaﬁgles

l.1.1.a 2<0;y+0; 8«0 <=> zcy<z<0
1.1.1.b X0 Yy<2; 3¢y <=> g+y<z<l
"1l.l.1.c xeyfzg+b; wex <=> we(xey*z+5)
1.1.1.4
z<P{z); .
while B(g«P(x)) do
while B(x) do <=>
' {f(z)]
[flz);2«P(2)]

1.2 Transformations on Straight Line Sequences of Assignments

The transformations in this section (51.2) deal

with sequences of assignments of the form

x1+EI; 32+E2; « v e 3 xn+En N

=

where the z, are variables and the E, are expressions
which are either wvariables or constants, or are formed

by applying operators to subexpressions formed from
operators, variables,and constants.

1.2.X Useless Assignment Elimination

Repeatedly delete assignments of the form x<F
where x is not used subsegquently in thé program and

- where F is side-effect-free.

0 = R Em
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1,2.1.a

1.2.1.b

example Let x, y, 2, be input variables and

u, v, w be output variables. We assume that

the input variables have initial values, and that
only the values of the output variables are

needed. (In particular, r is not an output variable.}

U<+l *y; u+x+2*y; u<x+24y;
t<3*utz; t<«3*u+z; t<3*u+z;
s<til; st-1; emptys

b => empty; => emply;

v*u/6; vYu/6; veu/é;

wEttug wEt+u; wEL+u;

algorithm - Construct a directed graph with a
node for each variable. Construct for each
assignment an arc from node vy to v, whenever
v2+E(...v1...) where H...vl...) is any expression
containing an occurrence of Vqe Now pﬁt squares
around output variables. For instance, example

§5.2.1.a 1leads to the following graph:
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& o | -- input variables

temporary variables

output variables

Retain that portion of the graph connected by

at least one path to some square (i.e. to some
output variable) ,and discard nodes ﬁdt connected

to some square by at least one directed path. Now
eliminate assignments corresponding to deleted
-nodes..Eo;Iinstancé, the final form of . 1.1.2.a comes

from the following graph:

input variables

temporary variables

output variables

T Em B OB OB O O O

1.2.2 Redundant Assignment Elimination

In a straight line sequence of assignments, if

awvariable is assigned twice in succession without
being referenced after the first assignment but
before the second, then the.first assignment may be
eliminated. (Aho and Ullman give an algorithm covéring

the functions of §1.2.1,b and £.2.2 in (9] pp.850-851.)

/’%J»@o QW‘I qﬁwwﬁom@mm%,wga

T O ED
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i 1.2.2.a 'examEle__.

—
x<2*%q+b; ' empty;
_ y«S*bae; => y<3*b-c;
a<d/4+e; : zed/4+e;
z+y+2*z; ) gey+2%g;

1.2.3 Eliminating Assignments by Equality

1.2.3.a If the value of the variable a always
equals the value of the variable b then a+b can be

elimiﬂéted.

1.2.3.b special case:
a<a L o=> empty

1.2.4 Elimiﬁating Assignments by Constant Propagation and

Substitution

In a straight line sequence of assignments, an assignment
of the fdrm x+E can be eliminaﬁed by substituting E for x
everywhere x is referenced sﬁbsequently to the occurrence
of x+«E but before x or any of the variables of F are

reassigned.

€O su E B o Em e N [ oon B owm B oo B o B ~vce B ovont B ovus R wowss B avvemn
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example - . : N
(2

z<2%y-a; . ' empiy;

uet o u+t*(2%y-a) ;
g/ (v-3) _ => S veqg/(w-3)
we3*atc; we3*(2%y-al)+e ;

xeu+f(2); - : xeutf(2) ;

remark: By means of "symbolic execution", we can
¢ollapse any .straight line sequence of assSignment
statements intd 7# assignment statements, one for

each of the n "output" variables whbse'values need

to be used subsequently. Also, u51ng this transformatlon,
any variable whlch is a551gned a single constant value

may be systematically eliminated throughout its scope.

1.2.5 Reordéring Assignments to Eliminate Temporary Storage

1.2.5.a

o
&W'

Suppoée x and y are distinct variables having
disjoint scopes. Here, in a straight line sequence
éf assignments, the scope of a variable lasts from
the place it is assigned, up to and including

the last place it is referenced. Then y can be

replaced with x everywhere in yv's scope.
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1.2.5.b

examgle

x+2%q+b;

e x/d-e;

1.2.5.¢c

scopes.

uex+m*i;
. no more references
. to = beyond
. this point

yta-2%h;

—

tecey/d;

utm*ity;

. no more references
* to ¥ beyond
this point

try first §1.2.5.c.

z<2%q+bh;
tex/d-e;
usx+m*i;

r<q=-2%b;
tve-x/4;
usm*i+2;

Charnging Overlapping Scopes to Disjoint Scopes

In order for the transfotmation of §1.2.5.a to

apply, two distinct variables must have disjoint

In some cases, a straight line segquence

of assignments can be reordered so that over-

lapping scopes become disjoint.

This may be

accomplished by repeated application of pairwise

permutation of seguential statements.
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Erovided'(x does not occur inﬁéj and (y does

not occur in El) and ( x#y ):

x+El; ' : : y+53;
H*Eés' = x+E .3
1.2.5.4 example .
ze2*ta-c, x«2*g-c,
(::: y+2/b+d;jfi> o= uef(z);
usflx); - ye2/b+d;
veglyl; : vegl(yls

try next £81i.2.5.a.

1.2.6 . Cormmon Subexpression Elimination

Suppose the-Subexpression E is used two or more
times on-‘the right hand sides of assignments in

a straight line seguence of assigﬁments. ‘Let t
be a distinct new variable not appearing elsewhere

in the program.



T Rr——

oo B oo S wunt B cnot Y orevt B wouos B onvams BN woome JRY e BN oo MY one /4

=

20 -

1.2.6.a provided nd variable in E is reassigned in the

1,2.6.b

statements between

the assignments to x and y

respectively,. and t is a distinct new variable:

example
T -da2+52 3
mex/(~b);

y+a+Va2+b2 3

=

t+E;

e .t H

*

y*_..‘..‘tIII ;

‘t“dﬂz-ﬁb 2 3

zea~t P

m<x/(~b);

yea+t;
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2. Go To Forms & Labels

2.1 Go To Chain Elimination

2.1.a example

ge to LI; 42 %o L3
Ll: go to L2; => Ll1: go to L3;
L2: go to L&; . La: go to L3;

2.1.b example

go to L; L:8 => [:8
2.2 Elimination of Inaccessible Go To's & Labels

2.2.a Label Elimination - Let L be a label which- - does

not appear in'any go to- statement in the scope*of

L. Then L can be eliminated. try next 2.2.b

2.2.b Inaccessible Go To Elimination
provided execution of S results in executing a

Return or a go to L', and § is not a declaration:
LR S; QQ.L-L . =2 * e S:.c.

* The scope of a label L is defined to be the lexicographically
least enclosing block containing the label excluding
any nested blocks using the same label. This convention

follows ALGOL 60 usage.
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2.3 Eliminating the Empty Loop
2,3.a provided B is false:

L: ©f B then

begin => L;empty
5
goto L

end

2.3.b while false do 5 => empty

‘2.3.¢ try next §8.1

2.4 Other Transformations That Eliminate Go To's

2.4.a remark BSee §4.1.2, 54,.3.1, §4.4.2, and 58 .2 for
transformations that eliminate go teo's (namely,

inverses of transforms that eliminate for, while,

and repeat forms by reduction to explicit loops).

3. Conditional Forms

3.1 Trivial Conditional Simplifications

3.1.a if B then itrue else false => B

3.1.b if B then false else true => "B d

3.1.c if true then P else @ => P

3.1.4 if false then P else @ => @
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3.1l.e
3.1.t
3.1.9'
3.1h
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if B then P elge P => P

“if B then P else empty => 1if B then P

if B then embty else @ => if ~B then @

if apthen P else § => 1if B then @ else P

Distribﬁtion and Factoring on Conditionals

- 3.2.a

3.2.b

Let o be a unary operator in {+,-,~}.

" Let B be a binary operator in

A+-0*, 7, +:=37£r>rzr<:i: V, A}

Then,
provided a conditional is an operahd of an operator:

afif b then ¢ else d) => (if b then cec glse od)

zB(2f b then c¢ eglse d) => (if b then xBe glse zfd)

(if D then c else digz => (ij b then c¢Bx else dBx)

examgles

¢(£f.a>5 then Pla) else Q(al)} =>
(if a>5 then nP(a) else ~@(a))

x+(if a>5 then y else z) => (if a>5 then z+y else z+z)

(if a>5 then = else yl«b => (if a>5 then z<5 else y<5)

Let the conditional (if b then ¢ else d) be

an argument to a function call F(al,az,...,an).

Then,

n

F(al,...,(if b then ¢ else d),...,a,) =>

(if b then F(al,...,c,...,an)else FY&I,...,d...,an))

£
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3.2.d Let the conditional (if b then ¢ else d) be

3.2.e

3.2.f

3.2.g

a subscript in a subscript expression. Then,

AlZ

g2e--s{2f b then c else d),.;;,iij =>

(if b then A[iz,...,c,..,ik]eZse A{il”"’d""’ik])

if(if b then e else d) then w =>

2f b then (if ¢ then w) else (if d then w)

In general, let F(...x...) be a program form. Then,

F(...(if b then ¢ else d)...) =>

(if b then F(...ce...) else F(...d...))

provided b commutes with any subexpression of .F

whose order of execution with respect to b is changed

by'application‘of this general transformation.

examele
provided véNames (b):

for v+1 step 1 until N do

A[v, (2f b then ¢ else d)]+«B[v]

U

for v«1 gstep I until N do

if b then Alv,c)eBlvlelse 4lv,dl«B[v]

U

tf b then

for v+l step F until N do Alv,ce]«B[v]

else

for v«l step 1 until N do Alv,d}«B[v]
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3.2.h remark: Factoring and distribution are inverse

transfomatio_ns_ The rightward transformations above (=>)

illustrate distribution. Their inverses (<=} are

factoring.

3.3 Conditionalization of Boolean Expressions

3.3.a McCarthy Conditional Transformations:

Brovided a and b are side-effect-free:

anb => (if a then b else false)

avb => (if a then true else b)

na => (if a then false else true)

3.3.b Variable-Directed Conditionalization

Let F(al,az,.;.,an) be a Boolean expression over
Boolean primaries aqs Aogse » o 24, (for n>1) using

the operators {»,v,n»}. Define ¢ as follows:

provided .nz2:
_QF(al,ag,...,an) => if ay then ¢(V(F(true,a2,...,an)))
else Q{V(F(faZse,ag,.s.,an)))

provided n = 1:
¢(F(a1)) = VF(az)
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Where V is simplification with respect to
elimination of Boolean constants - as given

in §11.3.

example of Variable-Directed Conditionalization:

Let F(a,b,e,d) = (aa™b) v(da (ave)). Then,
b((amb) vldr(avel)) = if a
then ®(V( truea~b)v(daltruevel)})

else ¢(V¢falseA¢b)v(dn(falsevé))))

Applying removal of Boolean constants (Vw.r.t §11.3)

yields:

fﬁeﬁ arm: V(( trueanb)v.(d Al trueve)))=> ( ~“b) V- (datrue)

=> b vd

else arm: W fglseannb)v(dafalsevel))=> (faZse}\(dAé)

=> dae

whence
((arvb)vidafavel)) =>
. 1f a then @(@de) else &(dnre)

. ang %(vbvd) = if b then ®(V({ntruevd))else ¢(V(vfalsevd))

( dac) = if d then @(V( truese)lelse ¢(V( falsenrc))

So the entire net transformation is:

{anmvb) vida(ave)) => if a then (if b then d else irue)

elee (if d then ¢ else false)
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3.4.a example ) -

if a then (if b then ¢ else d) else(if b then c else e)

=> 1f b then c else (if a then d else e)

3.4.b remark §3.4.a is profitable if b is almost always /f

true and is cheap.

-y

4, 'Looping Forms

Reduction of For-Forms

4.1.1 to While—-Forms

Y

Yoo A T
4.1.1la for v<a step b until e do § =>

frlar o 4
while (v-c)*sign(b)<0 do
begin
53

D w+h

end

try next: Vw.r.t. §11.1 and §11.2
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4,1.1.b example . _ I

for ve v+I while v<N do =>

vev+l;

while v<N do

[S; v+v+1]

4.1.2 To Explicit Loops
4.1.2.a Let 11 and LZ be distinct new labels not used elsewhere

in the program:

for v<a step b until e do § => o/
‘begin : o |
Li: 2f (v-c)*sign(b)>0 then go to LZ;

v+p+b;
go to Li;

L2: empty
end

try next: Vw.r.t. §11.1 and 511.2.

4.1.2.p Let L1 and L2 be distinct new labels not used

elsewhere in the program.

for v«a while b do § =>
begin
Li: veg;

if ~b then go to L2;
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go to Li;

L2: empty
end

4.1.3 with Plural For-List Elements

Let P be a distinct, new precedure name, ndt used
elsewhere in the program.

4.1.3.a example Suppose e;,€g:..:38, is a for-list where
the e; are each arithmetic expressions:

wv*_ezﬁez;o--enﬁs =2

QrocedurelP;S;
v+ei;P;
v+e2;P;

Veen:P

end

4.1.3.b example

for v<a step b until ¢, e while f do § =>

=

begin

procedure P;S5;

vea;

while (v-c)*gigg(b)io dol(P; v+v+b 1;
vee;

while f do [Pivee]

end

3

trz next Ww.r.t. §11.
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4.1.4 Simplifying Reduced For-Forms

4,1.4.a remark: When the for list elements are of
a simple variety, simplification of a reduced
for-form with respect to §11.1 and §11.2 is
often possible. For example,

4.1.4.b example
for i<l step 1 until N do Alil«d =>

<17
Vv . .
while (i-N)*sign(1)<f dolalil«p;i<i+1]

Here, w.r.t., §11.1 and §11.2,V yields the steps:’

(1-N)*8ign(1)<d => (i-N)*1<f

L => (i-N) <f => (i), W"‘lﬁ
So the above result simplifies to
1<1;

while <N do [A[ile0;i<i+1]

4,2 Transforming Controlled Variables in For-Forms
4.2.1 Manipulating the Range

4.2.1.1 Shifting

provided - v is local to the - S

for-statement:

I
v

for v«a gtep b until ¢ do S(v)

for v« azk step b until eczk do S(v;k)

~ﬁ*

Vedy’
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Dialating {=>) and Contracting (<=)
2.a érovided v is local to the
for-statement:

for v<«a step b until e do S(v*k) <=>

or vea*k step b*k until e*k do S(v)

2.b example (of contracting the range:).

for nickels «5 step 5 until 100 do

P(nickels)
=> for nickels <«I step 1 until 20 do

Pinickels *5)

Renaming

provided { and ;7 are local, ang -

J € Names(S(i))

for ita step b until ¢ do S(i) =>

for jea step b until e do S(j)

Simplifying Final Test to Check for Zero
4.2 example Using §4.2.1.1 and §4.2.1.2
we can produce Final Tesﬁs on Zero:
for i<1 step 2 until 101 do P(i+§)
» Ffirst shift range down by 101 (using

4.2.1. EJ.
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for #<1-101 step 2 until 101-101 de

P((i+101)+6f

y then reduce to while loop and
v

simplify:

4 «-100;

while (i-f)*sign(2)<0 do [P((£+:oz;+a)
1+i+2

4 v gives final form:

i «-100;

while <0 do [P(i+107);i<i+2]

4.3 While~Form Introduction & Elimination

4.3.1 Reduction to Explicit Loops
Brbvided L is a distinct new label:
while b do § => L: if b then |

begin
53
go to I
end

See also §4.1.1, §4.4.1
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Repeat-Form Introduction & Elimination
4.4,1 Reduction to While-Forms

o fgwnfy
LR
repeat S until B => S; while~B do S }\ :

4.4.2 Reduction to Explicit Loops

provided L is a distinct new label:

repeat S until B => L:5;
| if ~ B then go to I

Loop-Form Transformations

4.5.1 Loop Fusion

4.5.1l.a example
for i+l step 1 until 20 do af1]«B[i];

for j«5 step & until 100 do CLj/53+f;

transforming the second by renaming (j-+i)
I :

and contraction of the range (see §4.2.1.2.b)

for i+1 step 1 until 20 do Ali}«Blil;

for i<1 step 1 until 20 do ¢[i]<F

¥ now by loop fusion

for i<1 gtep 1 until 20 do

begin
A[4] «Bl<);
cli] «#

end
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4.5.2 Loop Doubling

4.5.2.a examgle

for i+1 step 1 until 200 do Ali]«B[i]

=> for -i<1 step 1 until 50 do

Alzl«BL<];

A[i+50])«B[i+50]

4.5.3 Loop Case Splitting

4.5.3.a example =

for i<l step 1 until 30 do
if <15 then ali)«B[ilelse A[i]«-B1]

il
v

for i+1 step I until 15 do A[£}«B[1];

for i+16 step 1 until 30 do Al<]«-B[Z]

4.5.3.b remark contrast this with distribution

of conditionals in §3.2.9.

4.5.4 Loop Unrolling

4.5.4.a example
4 o v " ,':.‘
for i<0 step 5 until 15 do P(i+2) =>

ifowel TN Pliew))

el ol
SO
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P(2);
P(7);
P(12);
P(17)

4.5.5 Removal of Invariants

4.5.5.a example

for vel step 1 until ¥ do
zey+2;

A[v}+Blv-2]
end

x+JL2;

for v<l1 step 1 until N do Afv]«B[v-z]

4.5.6 Reduction in Operator Strength
4.5.6.a example Let k be a distinct, new variable:

for i<l step 1 until 100 do

A[1*25])«4
M
k+25; "

for €<l step 1 until 100 do

[A[k]<F; kek+25]
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4.5.6.b remark: compare with z4.1.2.1.a

applied to above input, which yields

i}
v

for i+25 step 25 until 2500 do A[i]<d

4.5.7 Test Replacements & Loop Removal

4,5.7.a example

begin local i;

while  1<100 do
Alk]<F;s
kek+25;

i+¢+1;

end

begin

k+25;

while k<2500 do
T4{k]«s;
[k+k+25;

end

4.5.7.b remark the right side is the reduction of 4.5.6.a

| - <
after i»j using While-Forms. o [%f
' (o)

4.5.8 Nested LooP'Simplicatidn

4.5.8.a rovided P and R commute.
while P g

1f @ then R else §

=2

wktZe P do
[[while @ do R];S]
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.4.5.8.b provided P and R commute:

repeat | _ repeat
if @ then R else S => [while @ do R; 51
until P until P

5. Compound Statements and Blocks

5.1 Eliminating Redundant Begin-End Pairs

-

5.1.a provided 5 is a single statement

begin

. begin . begin

S
end ' end -

end

try next §5.1.a

g r—
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5.2 Statement Fusions

5.2.1 Forward Fusion of Conditionals

Provided Sland'b commute: -

5.2.2 Backward Fusion of Conditionals

(if b then o else d);8; => if b thenles;5 lelseld;5;]

g
ﬁﬂ“ﬁ 5,2,3¢ Fusion of conditibnalsWithQut‘Else Clauses

R : '
Cﬂﬁy Provided b is invariant over c:
if b then e; _
. . = ifbthencelsed
if ~b then d o

NestaiConditionallntroduction'

5.2.4.a example

if a then {bjgo to L};]| |if a then b else

if e then {d;gg_zg_b}; =>| (£f e then d else e)

_.L: SI

Sl;ii b then ¢ else d => if b then[slgcjelse[sl;d] |

o
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5.2.4.b examgie

provided (Sl is a Return or a go to) and (52

is not labelled):

if a then S.:;8, => if a then S

1°°2

1 else 82

Using Block Structure to Save Space

Variables declared in disjoint blocks can use the same
space since their activations occur at disjoint times.

Hence, if a variable x is used in block B1 but not in

and is declared in any block global both

2
to Bl_and B2, moving the declaration to the head of Bl

block B

sSaves sSpace:

B - e

<declaration of x> ' B, <declaration of z>
B, | :

I : use of =

use of x : : .

. =>

Bor : By E

x not used x not used
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6. Declarations

[ vy Y o Y oo

| 6.1 Eliminating Useless Declarations

- If a variable is declared but never used within the

- scope of its declaration, the declaration can be
- eliminated.
- begin <declaration of x> ; begin empty;

-
-
*

PN ]

r not used not used

O see 4

end

4

6.2 Shifting Array Bounds

6.2.a If a k} subscript iy of an array A[...,ik,...]
is declared to vary between . and Dy s then the
declaration and use of A can be changed within
its scope by applying the following transformations

uniformly:

array A[...,mk:nk,...]=> array A[...,mkia:nkia,...]

A[...,ik,...] => A[...,ikia,...]

{ [
| L
[
[
;|]
H
[
[
L
L
1l
[
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6.2.b example

begin integer array A[1:100];

fdr i<l step 1 until 100 do

alile g

end

|
v

begin integer array A[#:99];

for i<l step 1 until 100 do
A[i-1)« 4

end

(Notice the latter can be impréved by applying

a range shift transformation given in §4.2.1.1)

li
v

begin integer array A[f#:991;

"~

for i+0 step 1 until 89 do

aliles

end

rEHMWEMMMM’mMMMMM
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6.3 Reduction in Array Dimension by Change of Declaration

and Accessing

6.3.a Let A[il,iz}...,ir] be a subscripted expression
for an array A of dimension r, where A is declared

by array A[ml:nl,mzznz,...,mr:nr]. Let f(ilfiz,...,ir)

be a 1-1, onto mapping of subscripts (il'iz"'°'ir)

onto the range m:n. Then, the following transformations

reduce A. to linear dimension when applied uniformly

in the scope of A.
array A[mz:nl,mg:nz,...,mr:nr] => array Alm:n]
A[ﬁl’zzf""zr] =>-_A[f(zifz2’f”’zr)]

6.3.b example

array A[1:8,1:N]); array A[I:Nz];

=

Bl BN O B .o

RV ICTE ) GAL(E-1)2N+5])

where £l(i,3) = (1i-1)*N+j

6.3.c more generally Let g(mlznl,...,mr:nr) = mi:ni,...,mﬁ:ni

and f(il,iz,...,ir) = f’(ii,lz,...,lk) be'a 1-1, onto

mapping of r-tuples onto k-tuples in the respective

domain and range Then,

D —
| —
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:n_] => array A[mi:ni,...,mi:ni]

array A{ml:nl,,..,mr r

 soonot SN it S o

L A[f(il,.‘..,-:':r)]...

3 transforms A by changing its dimension, shape, or

subscript ordering.

6.4 Fusion of Independent Modules into a Common Program with

Suitable Renaming.

NMfet Ml and Mz'be blocks using local names L1=(£ll,£12,...,£1m)
»

E3 B .3
404

which declares e;=e;” for (lzi<k), and let Left (E)

[ e |
V/
A

@

g = -{ei]E(ei,ef)sE}. Compute a substitution S={(ei,ni)|ei€

Left(E)An L uL, Ani¢nj for 1zi,j<k}. 8 is a renaming

[ o
T
*-:/,_V’%

of equivalence variables with distinct new names not

conflicting with names in both L, and L2' Now rename the

<

*

modules and fuse them, as follows:

<declarations for variables in Left(E)>

e

}mmmmmm
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7. Procedures

7.1 Eliminating Calls

7.1.1 Suitable Systematic Renaming

Suppose we have a procedure P which is declared
and then called within the scope of its definition,

as follows:

€D,

_qdecl_aration of P(?),'f;

<deelarations of-30>

[8(7.2.9 ) >

-<deelarations of 3}>

@[...p(‘&‘)...]

Here, P is declared with formal parameters £

and local variables T at the head of a block é:)..
Block is global to the definition and use of
P, and it contains declarations of global variables

ﬁb. The body of P is a piece of text B(?,E,§0)
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which is a function of ?,f and'EO. The

procedure P is called with a list_ a of actual
parameter expressions at a point @ in the

program. This point of call is embedded within

a block @ containing declarations of variables 31
defined for the point of call, but not at the point
of declaration of P. Thus, we can write E=al,a2,...,an
where ai=Ai(§0,§l) for (l<i<n) to indicate that

each of the actual parameters in the call P(a) can

be a function of variables EO and El‘

If the formal parameters T of P are called by name,
we substif.ute the actual parameter expressions a used
in the call P(g) for respective occurrences of f in
the body B(E‘,E,EO) , and we replace 'Ehe call P(a) at

level . with the block:
[. 0 <declarations of 7> B(Z,E,'_c}'o) l]* .

* The brackets ...[...}... are called "return intercept
brackets". If an expression of the form Return(X) is
executed within a pair of return intercept brackets,
control returns to the text immediately surrounding the

Ibracketed text, as if the bracketed text had been a
procedure call (see §12.2.4).
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Since this substitution may introduce name conflicts'
we must first employ "suitable systematic renaming"
to eliminate them. The following diagram indicates
the environments after replacing the call P(a) with
the text of P: |

._

<declarations of Eb >
<declaration of P(Jd‘.:);_f;
[B(?:-E:gg)_ ; >

-<declarat£on3 of g,>

...[<declarations of B>

BLE D5, 17 ...

T™wo forms of possible name conflicts arise when
we compare this diagram to the original form of
the program above. First, the proper bindings
of the actual parameters ai=Ai(§0{§l) may be
occluded by name conflicts with £, so that
naﬁes in £n(§0u§i) need to be changed. Second,

the proper bindings of §b may be occluded by

name conflicts with §1, so that names in 315 3b

need to be changed.
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W
We adopt the policy of changing the most local ' y
declaration of a given conflicting name. We U’Ivm \
choose distinct new names, not used elsewhere in ﬂ\op '

the program for this purpose. ' Thus, let N= gotb__-g’lu?u? "/_
be the set of names used in the program. Compute thi:ee

substitutions Sl,s2 and F as follows:

: ._\ -l . . —_ ..2; —
5= {(”1:*”-::)1(”11690"91)’ (v, is used in B(f,L,g,))

vi¢N, and v;% v3 for i#j} O

82={ (ni,n;’} Iniefn (g}'ou?l) ' (?'z?: 18 used in fz). .
v —~— s :
Ptnay nctoals 2 M

n;ﬁ'ﬁ, and né# n3 for i# j}

F =3’°‘xf?i= {(fi,fai)I(Iiign)}
s, 5,

Now create a substituted text as follows:
?declaration of P(?);Z;B(?,f,go} >

<declarations of g,>

<declaration of ;1 >

l-.ff [ <dectarations of T28(F. 1, 4p)]

F Sy
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" If the parameters T of P(f) are called by value

instead of by name, the block created at

becomes:
[ [ <declarations of ? and EE;
‘f;+31; f2+“33“’;fn+an;
b s 87,29, ]

2 L

vwhere the subStitution-ﬁz must be redefined to

eliminate conflicts with f as well as f, as follows:

sy = {(n,mn; ) |nie-('fﬁ-f)n(3du3i),(ni is used ?:nfa‘),'
S,
(n%éﬁ), and niﬁ nj for 1#3}

and where

A = {{uiil;i”(ai are distinet new symbols aifﬁ)

Sq

—
and aiea).

Before replacing the call P{a) with the derived
text.]h<dec1arat£ans of f>;8(3,f;§b)]
82

it is useful to attempt program simplication, since
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formal parameters may be replaced by constants

allowing partial evaluation of the surrounding

procedure text as outlined in §7.1.2.

7.1.1.a example

D) .

begin integer J,x,y; integer array A[1:100];

casXeycfiged; ...

procedure P(q,r);integer gsr;integer 1,4,k
begin i<x+s;j<y-1;k<f
. A[q+£]+A[r;(j+k)];T.
end _

&

begin integer 1,%,2;

[ e B sowws B zrmne R cumen SN oo [ wonos S et o [ o B s B suen

veaZzel;1+3;

(5

[.. .P({B"‘?:,z'f'j)...

end

end

e

To compute the substitutions, Sl,s2 and Ff first set:

Ay

el
[

= j:x:y:A

4l
B

q,r




A ——
B & B O O£ &) £ £ .o

~ 50 -

Then, using v~ to denote a distinct new symbol

corresponding to v, we get

th
L)
n

{(z, 2"} }
= {(i,17),(3,3")1}

tn

2
F= {(qz'+i),(r,z+j)}

Using these substitutions we get the final transformed

text:

begin integer J,x,y;integer array AlL1:100];

comeyfigeds ...
Qroaedure P(q,r) 'mteger q,r;integer z,g,k

begin i<x+2;J<y-1;k<0;
cocdlgrilealr-(5+k) 3. ..

® N

- begin integer 1,x°,2;

6

[ integer 153 7ks
begin i"+a+2;j +y-1;kef ;
oAl (xe+i )+ w245 ) - (G +R) ). .

~ lLend
end
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7.2.2 Partial Evaluation

7.1.2.a example

When the actual parametérs 2 of a procedure call
P(E) are substituted for the formal parameters 3
in the bédy B(?,f}go)'of~the procedure declaration
P(?), a plece of substltuted text B(a, ,go)
results which can frequently be simplified. For

example, let P be declared as follows:

integer procedure Modulo(z,y);integer z,y;

Return (if y=0 then z elge z-y*Entier(x/y))

and suppose we expand the call
.o Modulo(a[<Z]+1,2)...
The substituted body becomes

| Return(if 2=0 then 4[11+1 else -
&
(A[11+1) -CEntien((A[i1+1)/2)) ]
1 R wsert 2¢

omit)
But since 2=f evaluates to false, we can use
if false then A else B => B to simplify this to: ﬁj

64—
Y

<
[ Return(A[iJ+1-24Entier( (4[11+1)/2))]

Then, using tReturn(x)] => X, we get the final form:

...(A[z]+1)-2*Entter((A[z]+1)/2)...

C b,




.

[mmmmmmmmmmmmmmnquwum

- 52 -

7.1L2.b The Inside-Out Method

Partial evaluation of a piece.of ?rogram text

may be acdomplished using an "inside-out" method
which simplifies program_conétituents in the order
of deeper to shallower levels of nesting.- This

works as follows:

1. First, perform all possible arithmetic on constants.
Eg. 2*3+5 => 11, x*sign (6) => x*1 .(see §11.1).

2. Second, perform algebraic simplifications,
particularly elimination of algebraic identities
(as in x*1 => x, y+0 => y,lq*x_=> 0) and trivial
cancéllations (as in x/x => 1, 2y—3y+y => fg),
(see §11.1).

3. Third, simplify relational expressions {eg.
3>0 =>true, x¥x => EEEEE' x-y<§f => x<y, =-a--b
=> a>b), (see 11.2). | »

4,  Fourth; simplify Boolean expressions {eg.

{(x>0) A (truevfalse) => (x>0},

“v(trueva) => ~(true) => false. In particular, Boolean

constants true and false that are operands

of Boolean operators may be eliminated (see §11.3).
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5. Finally, simplify control forms (eg.

if true then x else y => x, while false do

S => empty)

Whenever a function £(3) is called with actual
parameters 2ﬁal}a2,...,anthat are all constants,
the entire call will simplify to a constant (by

normal procedure evaluation).

8. The Mechanics of the

Empty and Undefined Program Forms

Empty Introduction and Elimination

The empty program is an identity under program trans-
formation, mﬁch the same way that 0 and 1 are identities
under addition and multiplication (x+0 = X, X*1 = x).
The empty program is created by transformations that map
program fragments that do nothing into the explicit

constant empty. For instance,

while false ég 5 => empty

and

if falee then A => empty

The empty program combines with program syntax in which

it is embedded according to certain simplification laws.
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Empty Block Elimination

begin
empty => emgtgl
end

Empty For Statement Elimination

provided i is local to the for-statement:

for i<a step b until e do empty; => empty

Empty Statement and Empty Declaration Elimination

begin 51;32;...Si_j;emgtg;3£+l;...;3n end =>

-begin 81382;...;Si_I;S£+1;...;Sn end

As an example of the latter transformation,

-note that a Jabelled empty statement can be

eliminated by transferring its label to the
following statement:
L:empty ; =3 L:s, 3
Sz; - -ooo
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8.1.4 Empty Procedure Elimination

procedure P(g);<decZarations>;empfy=>empty

provided all calls P(a) in P are also replaced

by empty everywhere in the scope of the declaration
Of P. whAT ABoOT A+P(Q) = Atemghy lecomat o zhid ¢
- T o Aergt =A ° i
Reueoga- ddudities fov el the Quatse ¢ et DAL ot

8.1.e Empty While-Do and Repeat-Until Elimination N

provided b is side-effect-free:_
while b do empty => empty W{;wg
provided b is side-effect-free:

repeat empty until b => empty

Undefined Introduction and Elimination

The undefined program (or, special case, the undefined
value} can result from executing or transforming certain
program forms. For instance, if a=0 then
aa => undefined ,
x/a => undefined , and

Log(a) => undefined
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The undefined value can propagate. Whenever
an operand of an operator, or an argument of a

function is undefined, then the result is undefined.

a <operator> undefined => undefined

‘undefined <operator> a => yndefined

<operator> undefined => undefined
f(al,az,...,an) => undefined if a; = unde fined

for some i such that (1<i<n).

When undefined is a body of an iterative control

form, or a procedure, the result is undefined.

while b do undefined => undefined

repeat undefined'untiz b => undefined

for v+a step b until c Qg_ﬁndefined %}undefined

When undefined is an arm of a conditicnal then the
result is undefined unless the arm is not executable.

Thus, for example,

if x>0 then undefined else P(al => undefined

if false then undefined else P({al) => P(a)

if true then x else undefined => &

; f“
wyﬁ?d@f\A\ ,
¢! .
N
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8.2.4 A call in a procedure which has not been declared

8.2.e

In strict inside-out evaluation by mechanical means, it is

convenient to be able to deal with the undefined program.

is undefined.

provided P has not been deeclared :

P(EU => undefined

example

In general, the undefined program form may appear
as a result of an undefined operation, but it may,
in turn, be eliminated through transformations of
the text in which it is embedded. PFor instance,

expanding the call Modulo (5,0) in the function

integér procedﬂre Modulo (z,y) ;integer Z,y;

Return (if y=0 then x else gy*Entier (x/y))

gives:

I Return (if 0=0 then 5 else 5-0*Entier (5/0))0
¢ 8.2 -

0 Return (if true then 5.eglse 5-0%Entier (ﬁndefined))n

4 8.2.a
| Return (¢f true then § else §-0*undefined) ]

¥ 8.2.a tuwice
I Return (1if true then § else undefined) ]

L]

v 8.2.c
I Beturn (5) f

L]
v

]
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9. High-Level Forms

9.1 'Reduction versus Recognition

Reduction is a transformation that maps programs in a
language L into programs in a proper subset L° of L.

For instance, the reductive transformation:

- o
w0
while b do 5§ => L:ijﬁéa;;;;

begin
S;
go to L

end

maps programs written in a superset of Algol 60

into pure Algol 60.

Recognition is the inverse of reduction. It replaces

program fragments written in a language I~ with equivalent

constructions in an extension L of L” (where L c<lL).

An example of recognition mapping Algol 60 into an

extended Algol 60 is:

1<1;

it
v

for i<l step 1 until N do " repeat A[i]*0;i<i+1

A[17<0 until 1i>N
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Reduction can be used to map programs written in an extension
E of a base language B into programs written only in B.

If accompanied by simplification, reduction can produce
increased efficiency, but this may occur at the expense

of reduced legibility. Converself, recdgnition may improve

legibility at the expense of efficiency.

While the transformations in §9.2 are given as reductions,

*

they may be applied in the reverse direction to produce

recognitions.

Reductions

9.2.1 Parallel Assignments
A parallel assignment takes the form
(.‘31,-’32,. .l,xn)*‘(elgez, o.oc,en)

and assigns the values of e; to X3 all at once
(for l<izn). For instance, (x,y)<{y,x) exchanges

the values of x and y.

. - -~ -~ -~
- e x - " x

EEQE&QEQ xl,xz, ,xn are variables, Xyr¥5e 1%y
are distinct new variables not used elsewhere in

the program, and e; are side-effect-free (1<i<n):
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(zl,mz,...,xn)+(e1,ez,...,en{ '{>

.l -~ -
Tote. ;T “C 3. 3T %E ]
776 13Tg g ST TE, S

- o~ -
Rt S Y. IR, DA S . o
z1 1*7z Ta *n Tn

'If some of the x, are subscripted expressions, then

i
this reduction is valid provided no xj is used in

a subscript in x; for 1l<j<i. For instance,

(A[i], 1)« (1,a[3]) => A[ileizi-«alilsalilen [i);iei”
is valid, but (i,ali] )«@alil, i) =>

i7«Ali]; A" [id«i;iei”;ali]«a"[i]  is invalid

(Minimizing the number of temporary variables used
to serialize a parallel assignment has been shown

to be NP-complete by R. Sethil[ll).

Iterators

9.2.2a example

provided A is an array [1:N,1:M];

for xe (subscripts of .A) do Alzl«0 =>

for i<« 1 step 1 until N do
for g« 1 step 1 until M do A[i,73«0;
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$.2.2.b example (printing prime pairs between N and M)

~

[ for =ze(the set of odd integers -between N and M) do

if ((x) is prime) and ((x+2) is prime) then

Print(z, newline,z+2, newline) ]

=> [ x<2*Entier(N/2)+1;

while =z<i do
begin
if ((xz) ie prime) and ((x+2)} ie prime)
then Print(z, newline, m%z, newlinel;
xx+8

end ]

9.2.2.c remark The use of high level iteration clauses

such as xXe(Subscripts of A) or xe¢{(The set of-odd
integers) can sometimes make a program easiér for
people to read since the "key idea" is described
directly rather than being buried in the mechanics
of sequencing. .Using high-level iterators can
occasionally make program text more concise, since
a large amount of equivalent low-level program

text is sometimes reguired to express the same idea.

If an iteration clause can be given a perfectly
precise underlying meaning by means of mechanical

transformation, there is no reason not to use
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it in rendering high-level program text more legible

and concise for people.

9.2.3 Zahn and Dahl Loop Reduction -

_We use the form of Zahn and Dahl loops given by

Knuth [2].

9.2.3.a Zahn Loop Reduction

loop until <event>, or . . . Or <event> :

<statement_1i8t>o N

repeat;
then <event>1+ <gtatement Zist>1;

-
-
*

<event> -~ <gtatement Zist>n;

end

where <statement Zist>0 contains occurrences of
<gvent>, for (i<i<n), and <event>, are
distinct Boolean variables.
~ U

< + .
event>1 <event>2+...+<event>n+false,

x}

ZooP:f<statement Zist>a H

%

go to loop;

next:1f <event>1 then[<statement Zist>2] else

if <event> then[<statement 1£st>n] ;

i | ;
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where the substitution S, is given by

SI={(<event>i,[<event>i+true;32 to next)| (1<i<n)}

and where loop and next are distinct new labels

not appearing elsewhere in the program.

9.2.3.b Dahl Loop Reduction

Ioog;g}while'B:Eﬁregeat;
LI:[§];'
&\’}D . if ~B then go to L2;

@SQ [T1; go to L1;
L2: empty

where S and T may be sequences of one or more

statements and where L1 and L2 are distinct new

iabels not used elsewhere in the program.
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10.. High Level Transformations

10.1 Eliminating Search Exhaustion Tests by Data
Structure Extension ‘

10.1.1 example (See Introduction (pages 4-7) for explanation):

procedure Search(T,X); array T[1:N1; integer i;
begin i<N;

while >0 do if TLZ3=X then Return(truel) else iei-1;
Return(false)

end

U

Erocedure Search(T;X);arrag T{O:N]; intééer i3
begin TL0J«X; 1<N;

while TL11#X do i<i-1;

Return(ig£0)

end

10.2 Recursicn Removal

10.2.1 Replacing the Final Call With a Go To

— e ———

10.2.1.a exanple (of printing a binary tree T
composed of nodes which are either empty, or
contain an Info field which gives information
' to be printed, and Left and Right Subtree fields
‘which give pointers to left and right subtrees,
(c£. Knuth [2], p.281)).

procedure TreePrint(T); binary tree T; value T;
begin
if Empty(T) then Return;
| TreePrint{LeftSubTree0f(T));
Print{Info(T));
TreePrint(RightSubTreeOf(T)) -

end :

U




- 65 -

¥

-procedure TreePrint(T); b'z.nary tree T; value T;.

) L) L] Bl

7
Corrcck if ”Efnﬁ_z}(S) then go to Lé; Wf 3
' end géé? i:ﬁzh’

remark This program contains an instance of a
jump into the middle of a loop. For an interesting
defense of this "mortal sin", see Knuth [2],9.282.

begin
i1f Empty(T) then Return; . .
. Oovaudw
TreePrint(LeftSubTlree0f(T})); 0
- Print(Info(T)); . :
i T<«RightSubTree0f(T); go to L © -
end ) TMMW ¥ 1
] : - dnch mMW L1l
ﬁaﬂomm'
"o 57
] _ 10.2.2 Replacing a Recursive Call Using an Explicit Stack
10.2.2.a example (see Knuth [2], pp. 281-282):
] (/,.p“‘p ' The latter’ program in §10.2.1.a -transforms to:
Y & QD 4 E \ _
_ E QQFK%“A‘I procedure TreePrint(T); binary tree T; value T;
] T pe'? begin stack S; S<emptystack;
u ( &his throw me L1: while~Empty(T) do _ i
Thes 1S Push(T)onto(S); T<LeftSubTreeOf(T);
1 “THe ScopPe go to Li; '
u ok the LZ:T«TopOf(S); Pop(5);
(WHILE Print(Info(T));
H {or this to oe T+RightSubTreeO0f(T)
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10.2.3 Replacing a Descending Recursion with a Descending

Iteration
10.2.3.a example

procedure Factorial(N); integer N; value N;
Return( if N=0 then 1 else N*Factorial(N-1))

J

procedure Factorial(N); integer N; value N;

begin integer i;

Factorial<l;
while N>0 do
_[%actoriaZ+N*Factor£aZ;
N<N-1

end

remark Recursion removal can be done meéhanicaily by
introducing explicit stacks. Transformation to
equivalent,stackless, iterative forms has received

B B — I e e I o I e [ s B oo B e

frequent attention in the literature. See for example,
McCarthy [3], Manna and Waldinger[5], and Darlington
and Burstall[4]. We do not attempt here a representative
summary of its many facets. .

10.3 Refinement of Abstract Data Structures

10.3.1 example (the set membership predicate XeY ):

Given an algorithm P written using set notation
(e.g. using expressions such as An(BuC), or

P OEN OBy B e

if XeY then C+«Cu{X}), we may wish to choose one of
many possible underlving representations R for sets,
and to map P into a concrete program using R. Here,
we exemplify what might occur if X were a- character,
Y were a set of characters, and we chose to represent

Y using a list.

£ e el
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Thus, we assert:

(1) Let (X} be a (Character)
(2} Let (Y) be a (Set of (Character)s)
(3) Represent (Y) by a (List)

Now we apply the following deductive assertion
to statement (3):

if (the Representation of (¥) ie a (List)) then
Assert( the Representation of (Y) is
(Finitely Enumerable))

As a consequence, a new statement can be made:

(2) The Represenfation of (¥} is (Finitely Enumerable)

'We now examine the following transformation:

provided (There exists a (Z) such that
((X) is a (2)) and ((¥) is a set of (2)s) and
(The Representation of (Y¥) is (Finitely Enumerable)):

(Xe¥) => [for each a such that aeY do
if X=a then Return(truel;

Return(false) )

The enabling condition of this transformation is
satisfied by assertions (1), (2} and (4) above. Hence,
(XeY) can be rewritten as:

(5) [for each a such that aeY do
1f X=a then Return(true);

Return(false)}
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R Now the following transformation applies:

provided The Representation of (Y) is a (List):

- - for each a such that aeY¥ do S(a) =>
{" | - [list t; t<Y;
I | . while t#NIL do
B begin
i . S(head(t)); ImBepber SCOPE

. OF Ay ITERATOR
_-z;+ta7,1(t? g t hAD Betber not.

end ] oMl OCLLLDE AMTHING nw 3
‘ ' ' ‘ ©n. conFLicl

It maps the last giﬁen form of the program in (5) into:

ﬂ {list t; teX;
while t#NIL do
. begin
if X=head(t) then Return(true);
t<tail(t)
end 13

Return(false) }

The latter piece of text is the concrete implementation

[ ~oe B wveon B concce SR sacs N vmoms (RN oo B

of the predicate Xe¢Y, when ¥ is a list.

If the representation for ¥ had been a bit-vector, or
an array instead of a list, the underlying concrete
code generated would have been different. For example,

provided The Representation of (¥) is (Array[M:N1):

o e
-

for each a such that ae¥ do Sf{al =>

=

[integer i;
for i<M gtep 1 until N do S5(¥[11)]

— e
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- ' is a transformation which applies if Y is represented
7 by a linear array. This transformation maps (5) above

- into the following concrete underlying program text:
. . 1 {integer i;

for i«M step 1 until N do
if X=Y[ilthen Return{true)];
Return(falsel)}

10.3.2 remark In a more extensive fashion, Schwartz[é]

N : has shown how abstract operations on sets can be
implementéd concretely, and the book by Dijkstra,

Dahl, and Hoare[7] gives numerous examples of refinement
of abstract data into concrete representations.

10.4 Replacing Loops that Sum Polynomials with Polynomials

of Higher Degree

10.4.1 The general idea of the transformation is;

provided f is a polynomial of degree n:

| e S ot B v SR e B st I swen

5«0 .
for i«a step b until e do  => S<gle)
S<S+f(1) where g is a polynomial

of degree n+l.

10.4.2 example

S«0; .
for i«1 step 1 until n do => S<(n+1)*n2
5«5 + 3*i%.1/2

,né?éxfxﬁé
U ke of ornt of #emok ommon f # LP°

S - i R L

n(mn;‘ ht) - b

=z |

=1 e

7 EEm Em
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In many cases, the polynomial g can be determined
using the calculus of finite differences (see
Goldberg [8] for details). '

10.5 Procedural Abstraction

Naive programmers often repeat the same, or nearly the
same, sequence of instructions. For example, in the
computation of the Cosine of the angle between two
3-vectors v and w one might find the code: |

oo S woven B s SR svows BN s S suouen B sun SR dmme

S<0r

for i<l step 1 until 3 do
S5+«S+v[11*wl1];

Re0; - . .

_ Jor i<l step 1 until 3 do

3 , ReR+v[i1* v[11;

T<«0;

for i+l step 1 until 3 do
TP+l £1%0[1];

Result«S/{(R*T)

By recognizing the common loop one can replace
this code by the following:

real procedure Dot(z,y);real array w,yl1:3]3;

begin integer %;
Dot=0;
for i<l step 1 until 3 do Dot«Dot+xfil*ylil;

end;

Result<«Dot(v,w)/(Dot{v,v)*Dot{w,w))

CO B B £ e &y B En :
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' Procedural abstraction is the inverse of expansion of
a procedure call into a substituted, partially evaluated,
procedure text. A program to identify unifiable pieces
of code must be able to take a set of similar program
fragments (say similar with respect to structure},
Py,Py,...,P  , and to construct a least common generalization.

1l1. Manipulation of Expressions

11.1 Arithmetic Expressions

11.1.1 Performing Arithmetic on Constants

Let g and » be arithmetic constants, and let

execute(F). be the result of evaluating program -
fragment F to produce a value. Let o be an operator

such that o e'{+,-,x,%,4;<;£,=,2,>,=,sin;cds,d$s,eﬁt£er{

log,exp, sign}. Then,

(aa) => execute(oal

{aab) => execute(aab)

11.1.2 Eliminating Arithmetic Identities

a+0 => av a-0 => a’

0+a => av _ 0-a => -a /

a*l => as/f a/l => a/

l*g => a /K 0/a => OV/

0%*a => 0/

a*g => 0+ remark: See §8.2 for cases that
yield an undefined result.

at0 => 1/

1taq => 1V

arl => av
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11.1.3 Trivial Cancellations

ez => 0/

z+(~x) => 0 z/x =>-1.
o S

e

11.1.4 Eliminating Unary Minus N e

-(-a) => a/

(-a}+(-b}) =>
(-a)~(-b} =>
(~al)*(-b) =>
(-al)/(-b} =>

“f-a)+b =>b
at+{~b) => a
a-{-b) => a

Y_a)-b => —(a+h)"

- (a+b) (-a)*b => -(a*b}’

b-a a*(-b} => ~(a*b)

a*b ‘ (-a)/b => -(a/b) 0
a/b a/(-b) => -{a/b) -

-a
-b
+b

at(-b} =>1/(atb) |
(=@} AN =>((-1)+N)*(atN) ol (ol
-(a-b) => b-a

11.1.5 Clearing Rational Fractions

(a/b)*(e/d)
(a/b)/(c/d)
- {a/b)*e
e*(a/b)
(a/b)/e
e/(a/b)
(a/b)+N
(a/bl+(e/d) -
(a/b)=-(ec/d)
(a/b)+e
(a/b)-c
a-(b/e)
at+(b/e)

(a*e)/(b*d) 5

(a*d}/(b*ec) 5

{a*ec}/b a3

{a*ec)/b 3

a/{b*e} 3

(b*e)/a 3

(atN)/(b+HW) _ pst, done
(a*d+b*el)/(b*d) 5
(a*d-b*e)/(b*d) 5

(a+e*b)/b %
(a~c*b)/b 3
(a%e-b) /e >
(a*e+bl /e 2
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11.1.6 Suggestions for Simplifying Rational Forms

(2} Perform arithmetic on constants (811l.1.1).

(b) Eliminate identities (0 and 1) and perform
trivial cancellations (§11.1.2 and §11.1.3)

(¢) Eliminate unary minus (§11.1.4)

(d) Clear fractions (§11.1.5). Now the expression
is either in the form P or the form P/Q
where P and Q are free of division operators.

(e) Multiply out P and Q, collect like terms, and
cancel terms where possible.

(£) Try to factor P and Q and remove the polynomial ged.

(g) Optionally express polynomials in the numerator
(and denominator, if applicable) using Horner's Rule
for quick evaluation. E.g. '

n n-1 1
... =
an:x: + an_l:z: + +CZI£3 +ao

ay + z*(a1+m(a2+...x(an)...))

11.1.7 remark The above algebraic transformations produce

only mild simpli}ications of algebraic expressions. These
are only the most rudimentary and skeletal }ndications of
the sort of manipulations reqguired. Not only is algebraic
simplification unsolvable, in general, it requires a
si;able amount of sophisticated code, in particular cases.
The.approach of using only pattern-dirécted transformations
such as those above has been tried bylfggiggg;_gnd found to
be deficient in several respects. The code for the MACSYMA
System, a sophisticated algebraic manipulation system,

amounts to over 300,000‘words on the DEC PDP-10.
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This Catalogue does not aspire to swallow the whole
field of algebraic manipulation as a special case of
program manipulation, but instead emphasiées program
transformations outside the realm of conventional

algebraic manipulation.

11.2 Relational Expressions

11.2.1 Relational Simplifications

We define the following set: <rel>= {<,%,=,2,2,>}.

11.2.1.a Cancellations:

are <rel> bte => a <rel> b

o Dree

{oms B onoe [ conn B e B coves IO e B v [ s Y e O s

provided e>0: )
' <O 2 & b Lre\vQ&

% : * = ’
a ; <rel> b?e > a <rez>_b S elar Kéorms Cov

11.2.i.b Simplifications withl_q_ and 1 brision
a-b <rel> 0 =>a érel> b
0 <rel> a-b => 1D <rel> a
provided b>0:
a/b <rel> 1 => g <rel> b
1 <rel> &/b =>b> <rei> a
provided >0 and b$0: ‘ Y Coi
(1/a) <rel> (1/b) => b <rel> a
Sz >
11.2.1.c Simplifications to true and false -
a=a => true aSQ.=> true aza => true

a#a => false a>a => false a<q => false
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11.2.2 Arithmetic Negations of Relations

-~a < =b => q b
-a £ =-b => azb
-g > b => g < b.
-a é =b => a £ b
~q = =b => aq=pb
-a # =b => a=#b

11.2.3 Logical Relational Negations

~(a = b) = g =b/s:
~(a #b) => a=0b N
~a <b) = azb/"
~(a £b) => a>b V"~
~{a > b) => ag s b

~{a z b) => a <b

11.2.4 Relational Synonyms -

Let <ge>={>,2} and let <le>= {<,<}: o

" (a £ Bb) => (a-< b)v(a = b) _y'd
(a 2 b) => (a > b)v(a = b)

a=b=e¢ =» (a=>blalfa = )

a:<ge>,b <ge>,c => (a<ge>,b)r(b<ge>4c)

2
a <Ze>1b'<2e>2c => (a<le>;b)a(b<le>,e)

11.2.5 Combining Ranges
1l.2.5.a examples
(asxsh)a(eszsd) => max(a,ec)<x<min(b,d)
(asxz<h)v(esxsd) => if (bze)ifasd) then min(a,c)sxsmax(b,d)
else (aszsh)v(eszsd)
provided «>b: .(aswxs<b) => false -

;-aertc_,_



11.3 Boolean Expressions

11.3.1 Eliminating Boolean Constants

. a A true => ai a v true => true'/
: true na => a’ true va => true v
_j a A falge => false ’ a VvV false =>a :ﬁ,
| false A a => false / ' falseva =>a
] o ‘ ﬁﬁggg => false v
d ~falgse => true :

11.3.2 Boolean Simplifications and Eqnivalencés

anb <=> bag

_ Commutative Lauws
avh <=> bva '

an{bhral} <=> (ahb)Ac

~av(bve) <=> (avbl}ve Assoctative Laws

) /
Idempotent'Laws5/

an{bve) <=> (aab)v({anc) Distnibutive Laws

avibael) <=> (avblal{ave)

~(anb) <=»> (~a)v{~b)
- I
~{avb) <=> (~g)Aa(~b) DeMorgan's Laws

~eg <=> g Double Negation Law /

anrf{avb} <=> g

av{anb) <=> g Subsumption Laws

-




. : ~av(anb) <=> (~a)vb Cancellation Laws
~arl{avb) <=> (~a)ab
(anr~b)v(aab) <=> a Ground Res&lution Laws
- _ {av~b}Aa(avb) <=> a
sl (av~a) <=> true Ezeluded Middle Law
_ (an~a)_ <=> false Contradiction Law

] 11.3.3 remark Boolean simplification is at least as hard
as the NP-Complete problems and no method of simplification

is known requiring less than exponential time.

 S—



—

| I roms B o B oo B e R v S oo B s B o B s B cos B e BN oo e R uan i G ) am B e

- 78 =-

12. Appendices

12.1 Notational Conventions

12.1.1 Sequences

Vector notation is used to denote sequences

of statements or lists of identifiers or arguments:

statement sequences: <55,

1’ 2:"
= 1,”2,-.-,.0?1

= S S

tdentifier sequences:

a) <) 0l

argument sequences: = QgsQgs.--5a,

12.1.2 Substitution

A Substitution is a set of ordered pairé}of the
form (n,X), where n is a name, and X is an expression
to be substituted for n.

5§ = '{(ni,Xi)I n, are distinct names }

‘Let F be a program fragment containing instances of

the names n;. Then the result of substituting Xj for

every occurrence of n; simultaneously and uniformly

in F is denoted:
e
S

This is pronounced the "substitution of F with

’

respect to S".

- For example, Let S ={{x, a+bl}, (y, m*k), (z,F(y))}
and let F = begin q+x*z; if b then Return(y) end . Then,

./} = begin g«({a+b)*F(y);if b then Return(m*k) end

5 :
l -:duc;c.a ?p\\re.n se bt

@%W %W”"”’“
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12.1.3'Simplification

The simplificatioén of a program fragment F with
respect to a set of transformations x, is denoted

V. F
x

or, where the simplification transformations are

apparent from context, just simply V F.

12.2 Programming Language Forms

12.2.1 Use of Algol 60 Conventions
The syntax and termlnology used in the Catalogue
follow Algol 60 conventions, except for a few
extensions, which have been added to provide

coverage of structured programming syntax.

12.2.2 structured Programming Extensions

12.2.2.a While-Do Forms:

While <Boolean Expression>Do <Statement>
12.2.2.b Repeat-Until Forms:

Repeat <Statement> Until <Boolean Ezpression>

12.2.2.c Return Expressions and Statements:

To exit from the execution of a procedure P(g),
the statement form Return can be used. To exit
from a procedure P(g) and, simultaneously,to
- return the value of the expression F the expression
Return(E) can be executed. Executing Return(E) has
the same effect as executing begin P+«E;Return end
where P is the procedure identifier.
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12.2.3 Synonyms for Begin-End Brackets

Any form of parentheses or brackets can
be used to stand for Begin-End pairs in Algol 60.
The Catalogue uses such bracketing as

and

S .

In the latter case, indentation and the left
sguare bracket in the margin, together indicate the
scope of a Begin-End pair delimiting a compound
statement or block.

12.2.4 Return-Intercept Brackets

The special brackets ...[ ... } ... are
called "return-intercept brackets". Whenever
a Return statement, or a return expression of
the form Returﬁ(E4 is executed within réturn;intercept“
brackets, control passes to the text immediately
surrounding the least enclosing pair of return-
intercept brackets, as if the brackets delimited
the text of a procedtre call, Otherwise, the
return-intercept brackets function exactly like
Begin-End brackets. Return-intercept brackets can
be used to set up "block expressions" as in CPL.
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: n
For example, the following text computes X/ 2: £(1)
i=o

X/lreal 8; integer i; 5<0;
for i<0 step 1 until n do S<S+f(i);
Return(S)]}

12.2.5 Extended Identifiers and Procedure Calls

Sequences of identifiers Separated by spaces
stand for single identifiers, and procedure calls
and declarations may be given in the following
extended forms; ‘

12.2.5.a examples (of extended identifiers)

the Left Hand Side
Numerator of X
Output Buffer

12.2.5.b examples (of extended procedure calls)
Pop(T) From (S)

Write(M+5) On the (Mag Tape) Device
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