THE IRVINE PROGRAM
TRANSFORMATION CATALOGUE

A Stock of Ideas for Improving Programs Using Source-to-Source Transformations

Department of Information and Computer Science
University of California at Irvine
Irvine, California 92717

Research supported by
The National Science Foundation
under Grant DCR75-13875
Caution: This preliminary version of the Catalogue has not been debugged thoroughly.

THE IRVINE PROGRAM TRANSFORMATION CATALOGUE

A Stock of Ideas for Improving Programs Using Source-to-Source Transformations

T.A. Standish, D.C. Harriman, D.P. Kibler, and J.M. Neighbors
Department of Information and Computer Science
University of California at Irvine
Irvine, California 92717

Research Supported by
THE NATIONAL SCIENCE FOUNDATION
under Grant DCR75-13875

January 7, 1976
TABLE OF CONTENTS AND
TRANSFORMATIONS BY NUMBER AND TITLE

0. Introduction [1-12]

1. Assignment Forms [13-20]
 1.1 Nested Assignment Introduction and Elimination [13]
 1.2 Transformations on Straight Line Sequences of Assignments [13-20]
 1.2.1 Useless Assignment Elimination [13-15]
 1.2.2 Redundant Assignment Elimination [15-16]
 1.2.3 Eliminating Assignments by Equality [16]
 1.2.4 Eliminating Assignments by Constant Propagation and Substitution [16-17]
 1.2.5 Reordering Assignments to Eliminate Temporary Storage [17-19]
 1.2.6 Common Subexpression Elimination [19-20]

2. Go To Forms and Labels [21-22]
 2.1 Go To Chain Elimination [21]
 2.2 Elimination of Inaccessible Go To's and Labels [21]
 2.3 Elimination of the Empty Loop [22]
 2.4 See also Statement Fusions and Introduction of Looping Forms [22]

3. Conditional Forms [22-27]
 3.1 Trivial Conditional Simplifications [22-23]
 3.2 Distribution and Factoring on Conditionals [23-25]
 3.3 Conditionalization of Boolean Expressions [25-27]
 3.4 Reordering Nested Conditionals [27]

4. Looping Forms [27-37]
 4.1 Reduction of For-Forms [27-30]
 4.1.1 to While-Forms [27]
 4.1.2 to Explicit Loops [28-29]
 4.1.3 with Plural For-List Elements [29]
 4.1.4 Simplifying Reduced For-Forms [30]
 4.2 Transforming Controlled Variables in For-Forms [30-32]
 4.2.1 Manipulating the Range [30-32]
 4.2.1.1 Shifting [30]
 4.2.1.2 Dialating [31]
 4.2.1.3 Renaming [31]
 4.2.1.4 Simplifying Final Test to Check for Zero [31-32]
 4.3 While-Form Introduction and Elimination [32]
 4.3.1 Reduction of Explicit Loops [32]
 4.4 Repeat-Form Introduction and Elimination [33]
 4.4.1 Reduction to While-Forms [33]
 4.4.2 Reduction to Explicit Loops [33]
4.5 Loop-Form Transformations [33-37]
 4.5.1 Loop Fusion [33]
 4.5.2 Loop Doubling [34]
 4.5.3 Loop Case Splitting [34]
 4.5.4 Loop Unrolling [34-35]
 4.5.5 Removal of Invariants [35]
 4.5.6 Reduction in Operator Strength [35-36]
 4.5.7 Test Replacement and Removals [36]
 4.5.8 Nested Loop Simplifications [36-37]

5. Compound Statements and Blocks [37-39]
 5.1 Eliminating Redundant Begin-End Pairs [37]
 5.2 Statement Fusions [38-39]
 5.2.1 Forward Fusions with Conditionals [38]
 5.2.2 Backward Fusions with Conditionals [38]
 5.2.3 Fusion of Conditionals without Else Clauses [38]
 5.2.4 Nested Conditional Introduction [38]
 5.3 Using Block Structure to Save Temporary Space [39]

6. Declarations [40-43]
 6.1 Eliminating Useless Declarations [40]
 6.2 Shifting Array Bounds [40-41]
 6.3 Reduction in Array Dimension by Change
 of Declaration and Accessing [41-43]
 6.4 Fusion of Independent Modules into a Common Program
 with Suitable Systematic Renaming [43]

7. Procedures [44-53]
 7.1 Eliminating Calls [44-53]
 7.1.1 Suitable Systematic Renaming [44-50]
 7.1.2 Partial Evaluation [51-53]

8. The Mechanics of the Empty and Undefined Program Forms [53-57]
 8.1 Empty Introduction and Elimination [53-55]
 8.2 Undefined Introduction and Elimination [55-57]

9. High-Level Forms [58-63]
 9.1 Reduction versus Recognition [58-59]
 9.2 Reductions for
 9.2.1 Parallel Assignments [59-60]
 9.2.2 Iterators [60-62]
 9.2.3 Zahn and Dahl Loops [62-63]
10. High Level Transforms [64-71]
 10.1 Eliminating Search Exhaustion Tests by Data Structure Extension [64]
 10.2 Recursion Removal [64-66]
 10.3 Refinement of Abstract Data Structures [66-69]
 10.4 Replacing Loops that Sum Polynomials with Polynomials of Higher Degree [69-70]
 10.5 Procedural Abstraction [70-71]

11. Manipulation of Expressions [71-77]
 11.1 Arithmetic Expressions [71-74]
 11.2 Relational Expressions [74-75]
 11.3 Boolean Expressions [75-77]

12. Appendices [78-81]
 12.1 Notational Conventions [78-79]
 12.2 Programming Language Forms [79-81]

13. References [82]
Introduction

The Irvine Program Transformation Catalogue is basically a source book of ideas for improving programs. By casual browsing, the reader may discover a number of useful techniques for transforming programs into better ones. When the moment comes to apply a particular technique, the Catalogue can be referenced for details.

The ideas are presented in the form of source-to-source transformations. These transformations show how to change source language programs in a given form into improved source language programs. Many of the transformations are given as rules of exchange of the form \(P = Q \). This is intended to follow conventional usage in mathematics. For example, in algebra, we might find the distributive law given in a form such as \(x(y + z) = xy + xz \), in logic, we might find a simplification law given as \(b \land (b \lor c) = b \), and in a table of integrals, we might find a rule such as \(\int u \, dv = uv - \int v \, du \). Each of these exchange laws can be used to replace a given expression with an equivalent one.

In a similar vein, we can specify exchange rules for expressions used in computer programs. For instance, we
might give a distributive rule involving conditional expressions, such as

\[x + (\text{if } b \text{ then } y \text{ else } z) = (\text{if } b \text{ then } x+y \text{ else } x+z) \]

To specify that a given exchange rule is intended for use in a preferred direction, we write \(P \rightarrow Q \). For example, writing \(b \land (b \lor c) \rightarrow b \) signifies our preference for replacing the more complex expression \(b \land (b \lor c) \) with the simpler expression \(b \), where possible.

Under some circumstances, we might give separate names to the same exchange applied in different directions. For instance, \(xy + xz \rightarrow x(y+z) \) might be called "factoring out the monomial \(x \)"; whereas \(x(y+z) \rightarrow xy + xz \) might be called "multiplying through by \(x \)".

The use of the double shafted arrow (\(\Rightarrow \)) in place of the equal sign (\(= \)) can also help relieve possible ambiguities in the transformation of expressions containing the equal sign itself. For example, writing

\[b = c = d \Rightarrow (b = c) \text{ and } (c = d) \]

is less ambiguous than writing

\[b = c = d = (b = c) \text{ and } (c = d) \].
For this reason, we prefer to indicate bi-directional exchange rules using a double-headed arrow (\(\iff\)) as in

\[
x(y + z) \iff xy + xz.
\]

Some transformations can be applied only under special conditions. For example, provided \(a \neq 0\) we can write \(a^0 \Rightarrow 1\). Sometimes, we state such conditions formally as part of a transformation rule, as in writing

\textit{provided} \(a \neq 0:\)

\[
a^0 \Rightarrow 1.
\]

In this case the condition \((a \neq 0)\) is called an \textit{enabling condition}.

Not all source-to-source transformations can be conveniently stated as exchange rules. Sometimes it is preferable to give a procedure for transforming a program into another. This condition usually applies when we cannot easily devise a simple syntactic "pattern" to match situations in which a transformation applies.

For example, one source-to-source transformation of interest consists of removing "useless" assignment statements, which assign values to variables which are
never subsequently used in a program. This process is better expressed as a procedure with several steps than as an exchange rule on various forms of programs.

Such procedures are program manipulating programs. In this situation, programs constitute dual entities that do the manipulating and are themselves manipulated. This requires introducing appropriate notational conventions to distinguish between agents and objects of actions. The notions are introduced in the Catalogue as required, and a full explanation is given in an appendix.

Sometimes an idea behind a general principle of source-to-source transformations is given by example. Once the example is properly understood, the general principle can be applied in a large variety of circumstances.

For instance, (following [2]) consider searching a table T to see if it contains an item X. Suppose the table has entries numbered from 1 to N, signified by $T[1], T[2], \ldots, T[N]$. A procedure to determine whether T contains X is as follows:
procedure Search(T, X); local i;

begin
i=N;

while i>0 do
 if T[i]=X then Return(true) else i=i-1;
 Return(false)
end procedure;

The "inner loop" of this procedure tests both whether \(i>0\) and whether \(T[i]=X\) for each distinct value of \(i\) tried.

Suppose we extend the table \(T\) to contain a new \(0\)-th entry \(T[0]\), and we initialize this entry to contain \(X\). Whether or not \(X\) was in the original table \(T\), we can now be confident that \(X\) is in the extended table.

The way the above procedure determines that \(X\) is not in \(T\) is by determining that the table has been exhaustively searched without having found any entry \(T[i]\) containing \(X\). However, using the extended version of \(T\) enables us to eliminate the test for exhaustion, as seen in the following procedure:

procedure Search(T, X); local i;

begin
 \(T[0]+X; \ i=N;\)
 while \(T[i]\neq X\) do \(i=i-1;\)
 if \(i=0\) then Return(false) else Return(true)
end procedure;
This procedure runs faster and is syntactically simpler than the previous one because the test \((i > 0)\) has been eliminated from the inner loop.

This specific program improvement is an example of a general principle, which can be stated as follows. Suppose you are searching to find whether a search space \(S\) contains an element \(X\) by systematically enumerating elements of \(S\) in some prescribed order and comparing them to \(X\). If you extend \(S\) to include one more element containing \(X\), which is guaranteed to be enumerated last in the particular order of search used, then there is no need to test explicitly for exhaustion of the search space in your algorithm. Instead, you can generate elements in the extended version of \(S\) until finding \(X\), and then you can conclude \(X\) was in the original unextended space \(S\), if and only if it was not found in the extension.

Once this general principle has been understood it can be applied not only to tables, but to search spaces of many different shapes and organizations, such as binary trees, list structures, and indexed files. Such a general principle cannot be easily expressed as an exchange rule \(P \Rightarrow Q\),
because the many forms of programs P to which it applies are not readily characterized as instances of a simple syntactic pattern P. Nor can we conveniently encode the general principle as a program manipulating procedure because the variety of programs and data structures to which it applies is too large to yield easily comprehensible code. But we can express such an idea by giving examples, and stating the general principle of which the examples are instances. Given the nature of our current knowledge of computer science, the latter is the best choice available to us for explaining such general program transformation ideas to people (as opposed to machines).

Thus, the transformations in the Catalogue are given in three forms: (1) pattern-directed exchange rules, (2) program manipulating programs, and (3) examples plus discussion.

Using the Catalogue to improve a given program may involve transformations at all three of these levels. For example, after producing the improved search program above, line 4 (at the bottom of page 5) reads:

\[4 \quad \text{if } i=0 \text{ then } \text{Return(}\text{false}) \text{ else } \text{Return(}true) \]
There are two pattern-directed exchange rules that can be applied to simplify this statement, namely:

factoring conditionals (see §3.2.0, actually a recognition of §3.2.6)

\[
if \ b \ then \ F(c) \ else \ F(d) \ \Rightarrow \ \ F(\ if \ b \ then \ c \ else \ d)
\]

and

subtracting conditionals (see §3.1.2)

\[
if \ b \ then \ false \ else \ true \ \Rightarrow \ \ \lnot b
\]

Applying these transformations to line 4, yields the following sequence of transformations:

\[
\begin{align*}
4 & \quad if \ i=0 \ then \ Return(false) \ else \ Return(true) \\
\downarrow \\
4 & \quad Return(\ if \ i=0 \ then \ false \ else \ true \) \\
\downarrow \\
4 & \quad Return(\lnot(i=0))
\end{align*}
\]

This last result can be rewritten as \(Return(i\neq0)\) by applying the synonym transformation \(\lnot(x=y) \Leftrightarrow (x\neq y)\).

Facility with the application of transformations in the Catalogue may be gained through practice.
The transformations in the Catalogue are intended to preserve program equivalence. In particular, this means we can apply certain transformations only under particular enabling conditions that guarantee equivalence. Two such enabling conditions are of such general applicability, however, that they deserve special mention in the introduction. These are called commutativity and freedom from side-effects.

Let F be a well-formed program fragment (i.e. a phrase in the grammar of the programming language at hand). Let $R(F)$ be the set of variables non-local to F that F either reads but never writes or reads before writing, and let $W(F)$ be the set of non-local variables that F writes (whether or not it also reads them). Here a local variable v in F is a variable used only within F and not elsewhere in the program.

Given two program fragments A and B, we wish to know when it is permissible to exchange their order of execution from $A;B$ to $B;A$ while preserving program equivalence. It is permissible for A and B to read the same read-only variables, but neither A nor B may write into variables the other reads before writing, nor may they write into common variables. In symbols, A and B are commutative provided that $W(A) \cap (W(B) \cup R(B)) = \emptyset$ and $W(B) \cap (W(A) \cup R(A)) = \emptyset$.
Whenever we are given a transformation that implicitly changes the order of execution of some of its constituent program fragments, the fragments whose execution order is changed must be commutative. This requirement is so pervasive that it is scarcely worth mentioning it explicitly every time it applies. For example, in the transformation:

\[a; (\text{if } b \text{ then } c \text{ else } d) \Rightarrow (\text{if } b \text{ then}(a;c)\text{else}(a;d)) \]

the order of execution of \(a \) and \(b \) is implicitly changed, so \(a \) and \(b \) must be commutative. This would exclude transforming

\[x+3; (\text{if } x>y \text{ then } y \text{ else } x) \]

into

\[(\text{if } x>y \text{ then } (x+3;y) \text{ else } (x+3;z) \]

for instance.

If the program fragment \(F \) does not write into any non-local variables (i.e. if \(W(F) = \emptyset \)), then we say that \(F \) is side-effect-free. Some transformations preserve program equivalence only if one or more of the constituent program fragments is side-effect-free. For example, the McCarthy conditional transformation:

\[a \land b \Rightarrow \text{if } a \text{ then } b \text{ else false} \]

requires \(b \) to be side-effect-free in order to preserve program equivalence, in general. This assumes that in \(A \land B \), \(A \) is executed before \(B \).
The Irvine Program Transformation Catalogue originates from a current NSF research project at U.C. Irvine on interactive program manipulation. We are trying to understand how to program a computer to look at a given program and to refine or improve it stepwise using source-to-source transformations.

When we speak of stepwise refinement of a program, we mean the following. Suppose P is a high-level program, written without certain commitments to underlying data representations. Suppose we apply transformations to P that "fill in details" mechanically by supplying data representations and generating associated lower-level program text so as to provide an implementation of P at a more concrete level. This concrete version of P is said to be a refinement.

Experience shows that the text of programs generated by mechanical refinement often requires improvement. Program improvement consists of transforming a program to achieve a better appearance or better performance properties, perhaps with the objective of meeting required operational constraints.

The Catalogue arose out of our attempts to describe and classify a spectrum of source-to-source transformation ideas we hope eventually to mechanize. We discovered,
coincidentally, that the Catalogue was a rich source of ideas for people to use to improve programs manually. It is also a beneficial pedagogical device to use to provide beginning students with a stock of ideas and techniques helpful for improving their programs.

While our basic research quest is aimed at mechanizing program refinements and improvements, one of its early by-products seems already to be potentially useful to students, educators, and, perhaps, practicing professionals alike. This may represent an instance where basic research spins off immediately usable results, and we intend to pursue further its potential benefits in these contexts.
1. Assignment Forms

1.1 Nested Assignment Introduction (\(\Rightarrow\)) & Elimination (\(\Leftarrow\))

1.1.1 examples

1.1.1.a \(x+0; y+0; z+0 \Rightarrow x+y+z+0\)

1.1.1.b \(x+0; y+x; z+y \Rightarrow x+y+z+0\)

1.1.1.c \(x+y*z+5; w+x \Leftarrow w+(x+y*z+5)\)

1.1.1.d

\[\begin{align*}
&x+P(x); \\
&\text{while } B(x) \text{ do } \Leftarrow \text{ while } B(x+P(x)) \text{ do} \\
&\left[f(x); x+P(x) \right]
\end{align*}\]

1.2 Transformations on Straight Line Sequences of Assignments

The transformations in this section (§1.2) deal with sequences of assignments of the form

\[x_1+E_1; x_2+E_2; \ldots; x_n+E_n;\]

where the \(x_i\) are variables and the \(E_i\) are expressions which are either variables or constants, or are formed by applying operators to subexpressions formed from operators, variables, and constants.

1.2.1 Useless Assignment Elimination

Repeatedly delete assignments of the form \(x+E\) where \(x\) is not used subsequently in the program and \(E\) is side-effect-free.
1.2.1.a **example** Let \(x, y, z \) be input variables and \(u, v, w \) be output variables. We assume that the input variables have initial values, and that only the values of the output variables are needed. (In particular, \(r \) is not an output variable.)

\[
\begin{align*}
 u &\leftarrow x + 2^3 y; \\
 t &\leftarrow 3^4 u + z; \\
 s &\leftarrow t - 1; \\
 r &\leftarrow s + t; \\
 v &\leftarrow u / 6; \\
 w &\leftarrow t + u;
\end{align*}
\]

1.2.1.b **algorithm** - Construct a directed graph with a node for each variable. Construct for each assignment an arc from node \(v_1 \) to \(v_2 \) whenever \(v_2 = \mathcal{E}(\ldots v_1 \ldots) \) where \(\mathcal{E}(\ldots v_1 \ldots) \) is any expression containing an occurrence of \(v_1 \). Now put squares around output variables. For instance, example §5.2.1.a leads to the following graph:
1.2.2 Redundant Assignment Elimination

In a straight line sequence of assignments, if a variable is assigned twice in succession without being referenced after the first assignment but before the second, then the first assignment may be eliminated. (Aho and Ullman give an algorithm covering the functions of §1.2.1.b and §1.2.2 in [9] pp.850-851.)
1.2.2.a example

\[
x + 2a + b; \\
y + 3b - c; \\
z + d/4 + e; \\
x + y + 2z;
\]

empty;

1.2.3 Eliminating Assignments by Equality

1.2.3.a If the value of the variable \(a \) always equals the value of the variable \(b \) then \(a + b \) can be eliminated.

1.2.3.b special case:

\[a + a \quad \Rightarrow \quad \text{empty}\]

1.2.4 Eliminating Assignments by Constant Propagation and Substitution

In a straight line sequence of assignments, an assignment of the form \(x + E \) can be eliminated by substituting \(E \) for \(x \) everywhere \(x \) is referenced subsequently to the occurrence of \(x + E \) but before \(x \) or any of the variables of \(E \) are reassigned.
1.2.4.a example

```plaintext
x=2*y-a;
u=t*x;
v=q/(w-3)
w=3*x+c;
x=u+f(2);
```

```plaintext
empty:
```

```plaintext
u+t*(2*y-a);
v+q/(w-3)
w+3*(2*y-a)+c;
x+u+f(2);
```

1.2.4.b remark: By means of "symbolic execution", we can collapse any straight line sequence of assignment statements into n assignment statements, one for each of the n "output" variables whose values need to be used subsequently. Also, using this transformation, any variable which is assigned a single constant value may be systematically eliminated throughout its scope.

1.2.5 Reordering Assignments to Eliminate Temporary Storage

1.2.5.a Suppose x and y are distinct variables having disjoint scopes. Here, in a straight line sequence of assignments, the scope of a variable lasts from the place it is assigned, up to and including the last place it is referenced. Then y can be replaced with x everywhere in y's scope.
1.2.5.b example

\[x + 2a + b; \quad x + 2a + b; \]
\[t \leftarrow x/4 - c; \quad t \leftarrow x/4 - c; \]
\[u \leftarrow x + m^*i; \quad u \leftarrow x + m^*i; \]

.. no more references

.. to \(x \) beyond

.. this point

\[y \leftarrow a - 2^*b; \quad \Rightarrow \quad x + a - 2^*b; \]
\[t \leftarrow a - y/4; \quad t \leftarrow a - x/4; \]
\[u \leftarrow m^*i + y; \quad u \leftarrow m^*i + x; \]

.. no more references

.. to \(y \) beyond

.. this point

try first §1.2.5.c.

1.2.5.c Changing Overlapping Scopes to Disjoint Scopes

In order for the transformation of §1.2.5.a to apply, two distinct variables must have disjoint scopes. In some cases, a straight line sequence of assignments can be reordered so that overlapping scopes become disjoint. This may be accomplished by repeated application of pairwise permutation of sequential statements.
provided \((x \text{ does not occur in } E_2)\) and \((y \text{ does not occur in } E_1)\) and \((x \neq y)\):

\[
\begin{align*}
&x \leftarrow E_1; \\
y \leftarrow E_2; \quad \Rightarrow \quad x \leftarrow E_2; \\
&y \leftarrow E_2; \\
&y \leftarrow E_2; \\
&x \leftarrow E_1; \\
&x \leftarrow E_1; \\
&y \leftarrow E_2; \\
&y \leftarrow E_2; \quad \Rightarrow \quad x \leftarrow E_2;
\end{align*}
\]

1.2.5.d example

\[
\begin{align*}
&x \leftarrow 2^{x} a - c; \\
&y \leftarrow 2 / b + d; \quad \Rightarrow \quad u \leftarrow f(x); \\
&u \leftarrow f(x); \\
&v \leftarrow g(y); \\
&v \leftarrow g(y);
\end{align*}
\]

try next §1.2.5.a.

1.2.6 Common Subexpression Elimination

Suppose the subexpression \(E\) is used two or more times on the right hand sides of assignments in a straight line sequence of assignments. Let \(t\) be a distinct new variable not appearing elsewhere in the program.
1.2.6.a provided no variable in E is reassigned in the statements between the assignments to x and y respectively, and t is a distinct new variable:

\[x^+...E...; \quad t^+E; \]
\[\vdots \quad \Rightarrow \quad x^+...t...; \]
\[\vdots \]
\[y^+...E...; \quad y^+...t...; \]

1.2.6.b example

\[x^+a - \sqrt{a^2 + b^2}; \quad t^+\sqrt{a^2 + b^2}; \]
\[m^+x/(-b); \quad \Rightarrow \quad x^+a-t; \]
\[y^+a+\sqrt{a^2 + b^2}; \quad m^+x/(-b); \]
\[y^+a+t; \]
2. Go To Forms & Labels

2.1 Go To Chain Elimination

2.1.a example

\[\text{go to } L_1; \quad \text{go to } L_3; \]
\[\vdots \quad \vdots \]
\[L_1: \text{go to } L_2; \Rightarrow L_1: \text{go to } L_3; \]
\[\vdots \quad \vdots \]
\[L_2: \text{go to } L_3; \quad L_2: \text{go to } L_3; \]

2.1.b example

\[\text{go to } L; L: S \Rightarrow L: S \]

2.2 Elimination of Inaccessible Go To's & Labels

2.2.a Label Elimination - Let L be a label which does not appear in any go to statement in the scope of L. Then L can be eliminated. try next 2.2.b

2.2.b Inaccessible Go To Elimination

provided execution of S results in executing a Return or a go to L', and S is not a declaration:

\[\ldots S; \text{go to } L \ldots \Rightarrow \ldots S; \ldots \]

* The scope of a label L is defined to be the lexicographically least enclosing block containing the label excluding any nested blocks using the same label. This convention follows ALGOL 60 usage.
2.3 Eliminating the Empty Loop

2.3.a provided B is false:

\[L: \text{if } B \text{ then} \]
\[\begin{align*}
\text{begin} & \quad \Rightarrow & \quad L: \text{empty} \\
\text{;} & \quad \quad & \quad \; \\
\text{go to } L & \quad \end{align*} \]
\[\text{end} \]

2.3.b while false do S \Rightarrow empty

2.3.c try next §8.1

2.4 Other Transformations That Eliminate Go To's

2.4.a remark See §4.1.2, §4.3.1, §4.4.2, and §5.2 for transformations that eliminate go to's (namely, inverses of transforms that eliminate for, while, and repeat forms by reduction to explicit loops).

3. Conditional Forms

3.1 Trivial Conditional Simplifications

3.1.a \(\text{if } B \text{ then } \text{true } \text{ else } \text{false} \Rightarrow B \)

3.1.b \(\text{if } B \text{ then } \text{false } \text{ else } \text{true} \Rightarrow \neg B \)

3.1.c \(\text{if } \text{true } \text{ then } P \text{ else } Q \Rightarrow P \)

3.1.d \(\text{if } \text{false } \text{ then } P \text{ else } Q \Rightarrow Q \)
3.1.e \[\text{if } B \text{ then } P \text{ else } P \Rightarrow P \]
3.1.f \[\text{if } B \text{ then } P \text{ else empty} \Rightarrow \text{if } B \text{ then } P \]
3.1.g \[\text{if } B \text{ then empty else } Q \Rightarrow \text{if } \neg B \text{ then } Q \]
3.1.h \[\text{if } \neg B \text{ then } P \text{ else } Q \Rightarrow \text{if } B \text{ then } Q \text{ else } P \]

3.2 Distribution and Factoring on Conditionals

3.2.a Let \(a \) be a unary operator in \(\{+, -, \neg \} \).
Let \(\beta \) be a binary operator in \(\{+, -, \ast, /, +, =, \neq, >, \geq, <, \leq, \lor, \land, +\} \).

Then, provided a conditional is an operand of an operator:
\[
\begin{align*}
\alpha(\text{if } b \text{ then } c \text{ else } d) & \Rightarrow (\text{if } b \text{ then } \alpha c \text{ else } \alpha d) \\
\beta(\text{if } b \text{ then } c \text{ else } d) & \Rightarrow (\text{if } b \text{ then } \beta c \text{ else } \beta d) \\
(\text{if } b \text{ then } c \text{ else } d)\beta x & \Rightarrow (\text{if } b \text{ then } \beta x \text{ else } dBx)
\end{align*}
\]

3.2.b examples

\[
\begin{align*}
\neg(\text{if } a>5 \text{ then } P(a) \text{ else } Q(a)) & \Rightarrow \neg P(a) \text{ else } Q(a) \\
+x(\text{if } a>5 \text{ then } y \text{ else } z) & \Rightarrow (\text{if } a>5 \text{ then } x+y \text{ else } x+z) \\
(\text{if } a>5 \text{ then } x \text{ else } y)+5 & \Rightarrow (\text{if } a>5 \text{ then } x+5 \text{ else } y+5)
\end{align*}
\]

3.2.c Let the conditional \((\text{if } b \text{ then } c \text{ else } d) \) be an argument to a function call \(F(a_1, a_2, \ldots, a_n) \).

Then,
\[
F(a_1, \ldots, (\text{if } b \text{ then } c \text{ else } d), \ldots, a_n) \Rightarrow (\text{if } b \text{ then } F(a_1, \ldots, a) \text{ else } F(a_1, \ldots, d, \ldots, a_n))
\]
3.2.d Let the conditional \((\text{if } b \text{ then } c \text{ else } d)\) be a subscript in a subscript expression. Then,

\[
A[i_1, \ldots, (\text{if } b \text{ then } c \text{ else } d), \ldots, i_k] \Rightarrow
\]

\((\text{if } b \text{ then } A[i_1, \ldots, c, \ldots, i_k] \text{ else } A[i_1, \ldots, d, \ldots, i_k])\)

3.2.e \(\text{if}(\text{if } b \text{ then } c \text{ else } d) \text{ then } w \Rightarrow\)

\(\text{if } b \text{ then } (\text{if } c \text{ then } w) \text{ else } (\text{if } d \text{ then } w)\)

3.2.f In general, let \(F(\ldots x \ldots)\) be a program form. Then,

\[
F(\ldots (\text{if } b \text{ then } c \text{ else } d) \ldots) \Rightarrow
\]

\((\text{if } b \text{ then } F(\ldots c \ldots) \text{ else } F(\ldots d \ldots))\)

provided \(b\) commutes with any subexpression of \(F\) whose order of execution with respect to \(b\) is changed by application of this general transformation.

3.2.g example

\[
\text{provided } v \in \text{Names}(b):
\]

\[
\text{for } v+1 \text{ step } 1 \text{ until } N \text{ do }
\]

\[
A[v, (\text{if } b \text{ then } c \text{ else } d)] + B[v]
\]

\[
\text{for } v+1 \text{ step } 1 \text{ until } N \text{ do }
\]

\[
\text{if } b \text{ then } A[v, c] + B[v] \text{ else } A[v, d] + B[v]
\]

\[
\text{if } b \text{ then }
\]

\[
\text{for } v+1 \text{ step } 1 \text{ until } N \text{ do } A[v, c] + B[v]
\]

\[
\text{else }
\]

\[
\text{for } v+1 \text{ step } 1 \text{ until } N \text{ do } A[v, d] + B[v]
\]
3.2.h **remark**: Factoring and distribution are inverse transformations. The rightward transformations above (⇒) illustrate distribution. Their inverses (⇐) are factoring.

3.3 **Conditionalization of Boolean Expressions**

3.3.a McCarthy Conditional Transformations:

provided a and b are side-effect-free:

\[a \land b \Rightarrow (\text{if } a \text{ then } b \text{ else false}) \]

\[a \lor b \Rightarrow (\text{if } a \text{ then true else } b) \]

\[\neg a \Rightarrow (\text{if } a \text{ then false else true}) \]

3.3.b Variable-Directed Conditionalization

Let \(F(a_1, a_2, \ldots, a_n) \) be a Boolean expression over Boolean primaries \(a_1, a_2, \ldots, a_n \) (for \(n \geq 1 \)) using the operators \(\{\land, \lor, \neg\} \). Define \(\phi \) as follows:

provided \(n \geq 2 \):

\[
\phi(F(a_1, a_2, \ldots, a_n)) \Rightarrow \begin{cases}
\text{if } a_1 \text{ then } \phi(F(\text{true}, a_2, \ldots, a_n)) \\
\text{else } \phi(F(\text{false}, a_2, \ldots, a_n))
\end{cases}
\]

provided \(n = 1 \):

\[
\phi(F(a_1)) = \lor F(a_1)
\]
Where \(\lor \) is simplification with respect to elimination of Boolean constants as given in §11.3.

3.3.c Example of Variable-Directed Conditionalization:

Let \(P(a, b, c, d) = (a \land b) \lor (d \land (a \land c)) \). Then,

\[
\Phi((a \land b) \lor (d \land (a \land c))) = \begin{cases}
if a \\
then \Phi((\neg a \land b) \lor (d \land (true \land c))) \\
else \Phi((\neg a \land false \land b) \lor (d \land (false \land c)))
\end{cases}
\]

Applying removal of Boolean constants (\(\forall w.r.t \) §11.3) yields:

then arm: \((\neg a \land b) \lor (d \land (true \land c)) \Rightarrow (\neg b) \lor (d \land true) \Rightarrow \neg b \lor d \)

else arm: \((\neg a \land false \land b) \lor (d \land (false \land c)) \Rightarrow (false) \lor (d \land c) \Rightarrow d \land c \)

whence

\[
\Phi((a \land b) \lor (d \land (a \land c))) \Rightarrow
\]

\[if \ a \ then \ \Phi((\neg b \land d)) \ else \ \Phi(d \land c)\]

\[\Phi((\neg b \land d)) = if \ b \ then \ \Phi((\neg true \land d)) \ else \ \Phi((\neg false \land d))\]

\[\Phi(d \land c) = if \ d \ then \ \Phi((\neg true \land c)) \ else \ \Phi((\neg false \land c))\]

So the entire net transformation is:

\[
(a \land b) \lor (d \land (a \land c)) \Rightarrow \begin{cases} if \ a \ then \ (if \ b \ then \ d \ else \ true) \\
else \ (if \ d \ then \ c \ else \ false)
\end{cases}
\]
3.4 Reordering Nested Conditionals

3.4.a example

\[
\text{if } a \text{ then (if } b \text{ then } c \text{ else } d) \text{ else (if } b \text{ then } c \text{ else } e) \\
\Rightarrow \text{ if } b \text{ then } c \text{ else (if } a \text{ then } d \text{ else } e)
\]

3.4.b remark §3.4.a is profitable if \(b \) is almost always true and is cheap.

4. Looping Forms

4.1 Reduction of For-Forms

4.1.1 to While-Forms

4.1.1a for \(v + a \) step \(b \) until \(c \) do \(S \) \[
\begin{array}{l}
\text{try next: } \text{Vw.r.t. §11.1 and §11.2}
\end{array}
\]
4.1.1.b example

\[
\text{for } v + v + 1 \text{ while } v \leq N \text{ do } \Rightarrow \\
\text{v + v + 1; } \\
\text{while } v \leq N \text{ do } \\
[S; v + v + 1]
\]

4.1.2 To Explicit Loops

4.1.2.a Let L1 and L2 be distinct new labels not used elsewhere in the program:

\[
\text{for } v + a \text{ step } b \text{ until } c \text{ do } S \Rightarrow \\
\text{begin } \\
v + a; \\
L1: \text{if } (v - a) \times \text{sign}(b) > 0 \text{ then go to L2; } \\
S; \\
v + v + b; \\
go \text{ to L1; } \\
L2: \text{empty } \\
\text{end}
\]

try next: w.r.t. §11.1 and §11.2.

4.1.2.b Let L1 and L2 be distinct new labels not used elsewhere in the program.

\[
\text{for } v + a \text{ while } b \text{ do } S \Rightarrow \\
\text{begin } \\
L1: v + a; \\
\text{if } \neg b \text{ then go to L2; }
\]
S;
go to L1;
L2: empty
end

4.1.3 with Plural For-List Elements

Let P be a distinct, new procedure name, not used elsewhere in the program.

4.1.3.a example Suppose e_1, e_2, \ldots, e_n is a for-list where the e_i are each arithmetic expressions:

$$\text{for } v+e_1, e_2, \ldots, e_n \text{ do } S \Rightarrow$$

$$\begin{align*}
\text{begin} \\
&\text{procedure } P; S; \\
&v+e_1; P; \\
&v+e_2; P; \\
&\vdots \\
&v+e_n; P \\
\text{end}
\end{align*}$$

4.1.3.b example

$$\text{for } v+a \text{ step } b \text{ until } c, e \text{ while } f \text{ do } S \Rightarrow$$

$$\begin{align*}
\text{begin} \\
&\text{procedure } P; S; \\
&v+a; \\
&\text{while } (v-a)^*\text{sign}(b) \leq 0 \text{ do } [P; v+v+b]; \\
&v+e; \\
&\text{while } f \text{ do } [P; v+e] \\
\text{end}
\end{align*}$$

try next w.r.t. SII.
4.1.4 Simplifying Reduced For-Forms

4.1.4.a remark: When the for list elements are of a simple variety, simplification of a reduced for-form with respect to §11.1 and §11.2 is often possible. For example,

4.1.4.b example

\[\text{for } i+1 \text{ step } 1 \text{ until } N \text{ do } A[i]+\emptyset \Rightarrow \]

\[\forall \left[i+1; \right. \]

\[\left. \text{while } (i-N) \cdot \text{sign}(1) \prec \emptyset \text{ do } [A[i]+\emptyset; i+i+1] \right] \]

Here, w.r.t. §11.1 and §11.2, \(\forall \) yields the steps:

\[(i-N) \cdot \text{sign}(1) \prec \emptyset \Rightarrow (i-N) \cdot 1 \prec \emptyset \]

\[\Rightarrow (i-N) \preceq \emptyset \Rightarrow (i \preceq N). \]

So the above result simplifies to

\[\left[i+1; \right. \]

\[\left. \text{while } i \preceq N \text{ do } [A[i]+0; i+i+1] \right] \]

4.2 Transforming Controlled Variables in For-Forms

4.2.1 Manipulating the Range

4.2.1.1 Shifting

provided \(v \) is local to the for-statement:

\[\text{for } v+a \text{ step } b \text{ until } c \text{ do } S(v) \Rightarrow \]

\[\text{for } v+a \text{ step } b \text{ until } c+k \text{ do } S(v+k) \]
4.2.1.2 Dialating (=>) and Contracting (<=)

4.2.1.2.a provided \(v \) is local to the

for-statement:

\[
\text{for } v+a \text{ step } b \text{ until } c \text{ do } S(v\text{*}k) \quad \Rightarrow \\
\text{for } v-a\text{*}k \text{ step } b\text{*}k \text{ until } c\text{*}k \text{ do } S(v)
\]

4.2.1.2.b example (of contracting the range:)

\[
\text{fornickels } +5 \text{ step } 5 \text{ until } 100 \text{ do } \\
P(\text{nickels})
\]

\[
\Rightarrow \text{fornickels } +1 \text{ step } 1 \text{ until } 20 \text{ do } \\
P(\text{nickels}^\text{*}5)
\]

4.2.1.3 Renaming

provided \(i \) and \(j \) are local, and

\(j \notin \text{Name}(S(i)) \)

\[
\text{for } i+a \text{ step } b \text{ until } c \text{ do } S(i) \Rightarrow \\
\text{for } j+a \text{ step } b \text{ until } c \text{ do } S(j)
\]

4.2.1.4 Simplifying Final Test to Check for Zero

4.2.1.4.a example Using §4.2.1.1 and §4.2.1.2

we can produce Final Tests on Zero:

\[
\text{for } i+1 \text{ step } 2 \text{ until } 101 \text{ do } P(i+6) \\
\text{first shift range down by } 101 \text{ (using } \\
4.2.1.1)\
\]
for \(i+1 \) \(\text{step} \) \(2 \) \text{ until } 101 \(\text{do} \)
\[
P((i+101)+6)
\]

\(\downarrow \) then reduce to while loop and simplify:

\(i \leftarrow -100; \)

\[
\text{while } (i \neq 0) \text{sign}(2) < 0 \text{ do } [P((i+101)+6) i+i+2]
\]

\(\downarrow \) \(\downarrow \) gives final form:

\(i \leftarrow -100; \)

\[
\text{while } i \leq 0 \text{ do } [P(i+107); i+i+2]
\]

4.3 While-Form Introduction & Elimination

4.3.1 Reduction to Explicit Loops

provided \(L \) is a distinct new label:

\[
\text{while } b \text{ do } S \Rightarrow L: \text{ if } \ b \text{ then begin } S; \text{ go to } L \text{ end}
\]

See also §4.1.1, §4.4.1
4.4 Repeat-Form Introduction & Elimination

4.4.1 Reduction to While-Forms

\[\text{repeat } S \text{ until } B \Rightarrow S; \text{ while } \neg B \text{ do } S \]

4.4.2 Reduction to Explicit Loops

provided L is a distinct new label:

\[\text{repeat } S \text{ until } B \Rightarrow L:S; \]

\[\text{if } \neg B \text{ then go to } L \]

4.5 Loop-Form Transformations

4.5.1 Loop Fusion

4.5.1.a example

\[\text{for } i+1 \text{ step } 1 \text{ until } 20 \text{ do } A[i]+B[i]; \]

\[\text{for } j+5 \text{ step } 5 \text{ until } 100 \text{ do } C[j/5]+\emptyset; \]

transforming the second by renaming \((j+i)\)\(^{1}\) and contraction of the range (see §4.2.1.2.b)

\[\text{for } i+1 \text{ step } 1 \text{ until } 20 \text{ do } A[i]+B[i]; \]

\[\text{for } i+1 \text{ step } 1 \text{ until } 20 \text{ do } C[i]+\emptyset \]

\(^{1}\) now by loop fusion

\[\text{for } i+1 \text{ step } 1 \text{ until } 20 \text{ do } \]

\[\begin{align*}
\text{begin} \\
A[t] & \leftarrow B[t]; \\
C[t] & \leftarrow \emptyset \\
\text{end}
\end{align*} \]
4.5.2 Loop Doubling

4.5.2.a example

\[
\text{for } i+1 \text{ step 1 until 100 do } A[i]+B[i] \\
\implies \text{for } i+1 \text{ step 1 until 50 do} \\
\begin{align*}
A[i]+B[i]; \\
A[i+50]+B[i+50]
\end{align*}
\]

4.5.3 Loop Case Splitting

4.5.3.a example

\[
\text{for } i+1 \text{ step 1 until 30 do} \\
\begin{align*}
\text{if } i<15 \text{ then } & A[i]+B[i] \text{ else } A[i]+B[i] \\
\downarrow \\
\text{for } i+1 \text{ step 1 until 15 do } A[i]+B[i]; \\
\text{for } i+1 \text{ step 1 until 30 do } A[i]+B[i]
\end{align*}
\]

4.5.3.b remark contrast this with distribution of conditionals in §3.2.g.

4.5.4 Loop Unrolling

4.5.4.a example

\[
\text{for } i+0 \text{ step 5 until 15 do } P(i+3) \implies \\
\begin{align*}
\text{if } i < 4 \text{ then } & P(i+1); \\
& \text{for }
\end{align*}
\]
\(P(2); \)
\(P(7); \)
\(P(12); \)
\(P(17) \)

4.5.5 Removal of Invariants

4.5.5.a Example

\[
\text{for } v+1 \text{ step 1 until } N \text{ do}
\]
\[
\begin{align*}
&\text{begin} \\
&x + y + 2; \\
&\text{end} \\
&x + y + 2; \\
&\text{for } v+1 \text{ step 1 until } N \text{ do } A[v] + B[v-x]
\end{align*}
\]

4.5.6 Reduction in Operator Strength

4.5.6.a Example Let \(k \) be a distinct, new variable:

\[
\text{for } i+1 \text{ step 1 until 100 do}
\]
\[
\begin{align*}
&A[i*25] + \emptyset \\
&k + 25; \\
&\text{for } i+1 \text{ step 1 until 100 do}
\end{align*}
\]
\[
[A[k] + \emptyset; k+k+25]
\]
4.5.6.b remark: compare with §4.1.2.1.a
applied to above input, which yields
\[\text{for } i+25 \text{ step } 25 \text{ until } 2500 \text{ do } A[i]+\varnothing\]

4.5.7 Test Replacements & Loop Removal

4.5.7.a example

\[
\begin{align*}
\text{begin} & \quad \text{local } i; \quad \text{begin} \\
& \quad i+1; \quad k+25; \\
& \quad k+25; \quad \text{while } k < 2500 \text{ do} \\
& \quad \text{while } i < 100 \text{ do} \quad \text{[}A[k]+\varnothing; \\
& \quad \quad \quad \quad \quad k+k+25; \\
& \quad \quad \quad \quad \quad k+k+25; \\
& \quad \quad \quad \quad \quad i+i+1; \quad \text{end} \\
\text{end}
\end{align*}
\]

4.5.7.b remark the right side is the reduction of 4.5.6.a
after i=j using While-Forms.

4.5.8 Nested Loop Simplication

4.5.8.a provided P and R commute:
\[
\text{while } P \text{ do } [Q \text{ commute } R] \Rightarrow \text{if } Q \text{ then } R \text{ else } S
\]

[[while Q do R]; S]
4.5.8.b provided P and R commute:

```
repeat
  if $Q$ then $R$ else $S$ => [while $Q$ do $R$; $S$]
until $P$
```

```
repeat
  until $P$
```

5. Compound Statements and Blocks

5.1 Eliminating Redundant Begin-End Pairs

5.1.a provided S is a single statement

```
begin
  $S$ => $S$
end
```

5.1.b

```
begin
  \[\begin{array}{c}
  \text{begin} \\
  \text{s} \\
  \text{end} \\
\end{array}\] => \[\begin{array}{c}
  \text{begin} \\
  \text{s} \\
  \text{end} \\
\end{array}\]
```

```
\text{try next } \S5.1.a
```
5.2 Statement Fusions

5.2.1 Forward Fusion of Conditionals

Provided S_1 and b commute:

$$S_1; \text{if } b \text{ then } c \text{ else } d \Rightarrow \text{if } b \text{ then } [S_1; c] \text{ else } [S_1; d]$$

5.2.2 Backward Fusion of Conditionals

$$(\text{if } b \text{ then } c \text{ else } d); S_1 \Rightarrow \text{if } b \text{ then } [c; S_1] \text{ else } [d; S_1]$$

5.2.3 Fusion of conditionals without Else Clauses

Provided b is invariant over c:

$$\text{if } b \text{ then } c; \quad \text{if } \neg b \text{ then } d \Rightarrow \text{if } b \text{ then } c \text{ else } d$$

5.2.4 Nested Conditional Introduction

5.2.4.a Example

$$\begin{align*}
\text{if } a \text{ then } \{b; \text{go to } L\}; \\
\text{if } c \text{ then } \{d; \text{go to } L\}; \\
L; S_1 \\
\text{try next §2.2.}
\end{align*}$$

\[\Rightarrow \begin{array}{c}
\text{if } a \text{ then } b \text{ else } \\
\text{if } c \text{ then } d \text{ else } e \\
L; S_1
\end{array} \]
5.2.4.b example

provided \(S_1 \) is a Return or a go to and \(S_2 \) is not labelled):

\[
\text{if a then } S_1; S_2 \Rightarrow \text{if a then } S_1 \text{ else } S_2
\]

5.3 Using Block Structure to Save Space

Variables declared in disjoint blocks can use the same space since their activations occur at disjoint times. Hence, if a variable \(x \) is used in block \(B_1 \) but not in block \(B_2 \) and is declared in any block global both to \(B_1 \) and \(B_2 \), moving the declaration to the head of \(B_1 \) saves space:

\[
\begin{align*}
B & \begin{bmatrix}
\text{declaration of } x \\
B_1 & \begin{bmatrix}
\vdots \\
\text{use of } x \\
\vdots \\
B_2 & \begin{bmatrix}
\vdots \\
x \text{ not used} \\
\vdots
\end{bmatrix}
\end{bmatrix}
\end{bmatrix} \\
B & \begin{bmatrix}
B_1 & \begin{bmatrix}
\vdots \\
\text{use of } x \\
\vdots \\
B_2 & \begin{bmatrix}
\vdots \\
x \text{ not used} \\
\vdots
\end{bmatrix}
\end{bmatrix}
\end{bmatrix}
\end{align*}
\]
6.1 **Eliminating Useless Declarations**

If a variable is declared but never used within the scope of its declaration, the declaration can be eliminated.

\[
\text{begin } \langle \text{declaration of } x \rangle ; \quad \text{begin empty};
\]

\[\vdots\]

\[x \text{ not used} \quad x \text{ not used}\]

\[\vdots\]

\[\text{end} \quad \text{end}\]

6.2 **Shifting Array Bounds**

6.2.a If a \(k^{th}\) subscript \(i_k\) of an array \(A[\ldots, i_k, \ldots]\) is declared to vary between \(m_k\) and \(n_k\), then the declaration and use of \(A\) can be changed within its scope by applying the following transformations uniformly:

\[
\text{array } A[\ldots, m_k: n_k, \ldots] \rightarrow \text{array } A[\ldots, m_k+a: n_k+a, \ldots]
\]

\(A[\ldots, i_k, \ldots] \rightarrow A[\ldots, i_k+a, \ldots]\)
6.2.6 example

begin integer array A[1:100];

for i=1 step 1 until 100 do
 A[i] = φ
end

\[\downarrow\]

begin integer array A[φ:99];

for i=1 step 1 until 100 do
 A[i-1] = φ
end

(Notice the latter can be improved by applying a range shift transformation given in §4.2.1.1)

\[\downarrow\]

begin integer array A[φ:99];

for i=0 step 1 until 99 do
 A[i] = φ
end
6.3 Reduction in Array Dimension by Change of Declaration and Accessing

6.3.a Let \(A[i_1, i_2, \ldots, i_r] \) be a subscripted expression for an array \(A \) of dimension \(r \), where \(A \) is declared by \(\text{array} \ A[m_1:n_1, m_2:n_2, \ldots, m_r:n_r] \). Let \(f(i_1, i_2, \ldots, i_r) \) be a 1-1, onto mapping of subscripts \((i_1, i_2, \ldots, i_r)\) onto the range \(m:n \). Then, the following transformations reduce \(A \) to linear dimension when applied uniformly in the scope of \(A \).

\[
\text{array} \ A[m_1:n_1, m_2:n_2, \ldots, m_r:n_r] \Rightarrow \text{array} \ A[m:n]
\]

\[
A[i_1, i_2, \ldots, i_r] \Rightarrow A[f(i_1, i_2, \ldots, i_r)]
\]

6.3.b Example

\[
\text{array} \ A[1:N, 1:N]; \quad \text{array} \ A[1:N^2];
\]

\[
\ldots A[i, j] \ldots \quad \Rightarrow \quad \ldots A[(i-1) \cdot N+j]
\]

where \(f(i, j) = (i-1) \cdot N+j \)

6.3.c More generally Let \(g(m_1:n_1, \ldots, m_r:n_r) = m'_1:n'_1, \ldots, m'_r:n'_r \) and \(f(i_1, i_2, \ldots, i_r) = f'(i'_1, i'_2, \ldots, i'_r) \) be a 1-1, onto mapping of \(r \)-tuples onto \(k \)-tuples in the respective domain and range. Then,
array $A[m_1:n_1, \ldots, m_r:n_r] \Rightarrow array A[m'_1:n'_1, \ldots, m'_k:n'_k]$

$A[i_1, \ldots, i_r] \Rightarrow A[f(i_1, \ldots, i_r)]$

transforms A by changing its dimension, shape, or subscript ordering.

6.4 Fusion of Independent Modules into a Common Program with Suitable Renaming.

Let M_1 and M_2 be blocks using local names $L_1 = (l_{11}, l_{12}, \ldots, l_{1m})$ and $L_2 = (l_{21}, l_{22}, \ldots, l_{2n})$ respectively. Let

$E = \{ (e_i, e'_i) | e_i \in L_1, e'_i \in L_2, (1 \leq i \leq k) \}$

be an equivalence declaration which declares $e_i = e'_i$ for $(1 \leq i \leq k)$, and let $\text{Left}(E)

= \{ e_i | \exists (e_i, e'_i) \in E \}$. Compute a substitution $S = \{ (e_i, n_i) | e_i \in \text{Left}(E) \land n_i \notin L_1 \cup L_2 \land n_j \notin n_i$ for $1 \leq i, j \leq k \}$. S is a renaming of equivalence variables with distinct new names not conflicting with names in both L_1 and L_2. Now rename the modules and fuse them, as follows:

$$
\begin{align*}
\text{declarations for variables in } \text{Left}(E) \\
\int_E \int_S [M_1] \\
\uparrow
\end{align*}
$$

It seems that the renaming of the conflicting variables in one module would be necessary. Why is the equivalence substitution needed.
7. Procedures

7.1 Eliminating Calls

7.1.1 Suitable Systematic Renaming

Suppose we have a procedure P which is declared and then called within the scope of its definition, as follows:

\[\text{\textbf{B1}} \quad <\text{declarations of } \hat{g}_0> \]
\[\text{\textbf{B2}} \quad <\text{declaration of } P(\hat{f}); \hat{\ell}; \]
\[\quad [B(\hat{f}, \hat{\ell}, \hat{g}_0)] \]
\[\text{\textbf{B3}} \quad <\text{declarations of } \hat{g}_1> \]
\[\quad [B[\ldots P(\hat{a})\ldots]] \]

Here, \(P \) is declared with formal parameters \(\hat{f} \) and local variables \(\hat{\ell} \) at the head of a block \(\text{\textbf{B2}} \). Block \(\text{\textbf{B1}} \) is global to the definition and use of \(P \), and it contains declarations of global variables \(\hat{g}_0 \). The body of \(P \) is a piece of text \(B(\hat{f}, \hat{\ell}, \hat{g}_0) \).
which is a function of \(\vec{f}, \vec{e} \) and \(\vec{g}_0 \). The procedure \(P \) is called with a list \(\vec{a} \) of actual parameter expressions at a point \(\text{B4} \) in the program. This point of call is embedded within a block \(\text{B3} \) containing declarations of variables \(\vec{g}_1 \) defined for the point of call, but not at the point of declaration of \(P \). Thus, we can write \(\vec{a} = a_1, a_2, \ldots, a_n \) where \(a_i = a_i(\vec{g}_0, \vec{g}_1) \) for \(1 \leq i \leq n \) to indicate that each of the actual parameters in the call \(P(\vec{a}) \) can be a function of variables \(\vec{g}_0 \) and \(\vec{g}_1 \).

If the formal parameters \(\vec{f} \) of \(P \) are called by name, we substitute the actual parameter expressions a used in the call \(P(\vec{a}) \) for respective occurrences of \(\vec{f} \) in the body \(B(\vec{a}, \vec{e}, \vec{g}_0) \), and we replace the call \(P(\vec{a}) \) at level \(\text{B4} \) with the block:

\[
\text{B4} \left[\ldots \left[\text{declarations of } \vec{e} \right] B(\vec{a}, \vec{e}, \vec{g}_0) \right]^* \ldots
\]

* The brackets \(\ldots \left[\ldots \right] \ldots \) are called "return intercept brackets". If an expression of the form \text{Return}(X) is executed within a pair of return intercept brackets, control returns to the text immediately surrounding the bracketed text, as if the bracketed text had been a procedure call (see §12.2.4).
Since this substitution may introduce name conflicts we must first employ "suitable systematic renaming" to eliminate them. The following diagram indicates the environments after replacing the call $P(\vec{a})$ with the text of P:

$$
\begin{align*}
\text{B1} & \quad \langle \text{declarations of } \vec{g}_0 \rangle \\
\text{B2} & \quad \langle \text{declaration of } P(\vec{f}), \vec{l}; \rangle \\
& \quad [B(\vec{f}, \vec{l}, \vec{g}_0)] \\
\text{B3} & \quad \langle \text{declarations of } \vec{g}_1 \rangle \\
\text{B4} & \quad \ldots \langle \text{declarations of } \vec{k} \rangle \\
& \quad B[(\vec{a}, \vec{l}, \vec{g}_0)] \ldots
\end{align*}
$$

Two forms of possible name conflicts arise when we compare this diagram to the original form of the program above. First, the proper bindings of the actual parameters $a_i = A_i(\vec{g}_0, \vec{g}_1)$ may be occluded by name conflicts with \vec{l}, so that names in $\ell \cap (\vec{g}_0 \cup \vec{g}_1)$ need to be changed. Second, the proper bindings of \vec{g}_0 may be occluded by name conflicts with \vec{g}_1, so that names in $\vec{g}_1 \cap \vec{g}_0$ need to be changed.
We adopt the policy of changing the most local declaration of a given conflicting name. We choose distinct new names, not used elsewhere in the program for this purpose. Thus, let \(N = \tilde{g}_0 \cup \tilde{g}_1 \cup \tilde{f} \) be the set of names used in the program. Compute three substitutions \(S_1, S_2 \) and \(F \) as follows:

\[
S_1 = \{ (v_i, \tilde{v}_i) | (v_i \in \tilde{g}_0 \cup \tilde{g}_1), (v_i \text{ is used in } B(\tilde{f}, \tilde{e}, \tilde{g}_0)) \}
\]

\(\tilde{v}_i \in N \), and \(\tilde{v}_i \neq \tilde{v}_j \) for \(i \neq j \)

\[
S_2 = \{ (n_i, \tilde{n}_i) | n_i \in \tilde{N}(\tilde{g}_0 \cup \tilde{g}_1), (n_i \text{ is used in } \int_{S_1} \tilde{a}), (n_i \text{ is actual}) \}
\]

\(\tilde{n}_i \in \tilde{N} \), and \(\tilde{n}_i \neq \tilde{n}_j \) for \(i \neq j \)

\[
F = \tilde{f} \times \int_{S_1} \tilde{a} = \{ (f_i, \int_{S_1} a_i) | (1 \leq i \leq n) \}
\]

Now create a substituted text as follows:

B1

<declarations of \(\tilde{g}_0 \)>

B2

<declaration of \(P(\tilde{f}), \tilde{e}; B(\tilde{f}, \tilde{e}, \tilde{g}_0) \)>

B3

<declaration of \(\tilde{g}_1 \)>

B4

\[
\int_{S_1} F S_2 \]

<declarations of \(\tilde{e} \); \(B(\tilde{f}, \tilde{e}, \tilde{g}_0) \)>

If the parameters \bar{f} of $P(\bar{f})$ are called by value instead of by name, the block created at S_4 becomes:

$$\int \int \int_{S_2} \{ <\text{declarations of } \bar{f} \text{ and } \bar{g}>;$$

$$f_1 \rightarrow a_1; f_2 \rightarrow a_2; \ldots; f_n \rightarrow a_n;$$

$$B(\bar{f}, \bar{g}, \bar{g}_0) \}$$

where the substitution S_2 must be redefined to eliminate conflicts with \bar{f} as well as \bar{g}, as follows:

$$S_2 = \{(n_i, n_i^c) \mid n_i \in (\bar{f}u\bar{g}) \cap \bar{g}_0, \bar{g}_1, (n_i \text{ is used in } \int \bar{a}) \}, \text{ for } i \neq j$$

and where

$$A = \{(a_i, \int a_i \mid (a_i \text{ are distinct new symbols } a_i \notin \bar{a}) \}$$

Before replacing the call $P(a)$ with the derived text $\int \{ <\text{declarations of } \bar{g}>; B(\bar{a}, \bar{g}, \bar{g}_0) \}$ at S_2, it is useful to attempt program simplication, since
formal parameters may be replaced by constants allowing partial evaluation of the surrounding procedure text as outlined in §7.1.2.

7.1.1.a example

\[\begin{align*}
B1 \quad & \text{begin integer } j, x, y; \text{ integer array } A[1:100]; \\
& \ldots x + y + 0; j + 3; \ldots
\\
B2 \quad & \text{procedure } P(q, r); \text{ integer } q, r; \text{ integer } i, j, k \\
& \quad \text{begin } i + x + z; j + y - 1; k + 0 \\
& \quad \ldots A[q + i] = A[r - (j + k)] \ldots \\
& \quad \text{end}
\\
B3 \quad & \text{begin integer } i, x, z; \\
& \ldots x + z + 1; i + 3; \\
& \quad \text{end}
\\
B4 \quad & \ldots P(x + i, z + j) \ldots \\
& \text{end}
\end{align*} \]

To compute the substitutions, \(S_1, S_2 \) and \(F \), first set:

\[\begin{align*}
\vec{g}_0 &= j, x, y, A \\
\vec{f} &= q, r \\
\vec{t} &= i, j, k \\
\vec{g}_1 &= i, x, z
\end{align*} \]
Then, using v^- to denote a distinct new symbol corresponding to v, we get

$$S_1 = \{(x, x^-)\}$$
$$S_2 = \{(i, i^-), (j, j^-)\}$$
$$P = \{(q, x^-+i), (r, z+j)\}$$

Using these substitutions we get the final transformed text:

```
begin integer j, x, y; integer array A[1:100];

...x+y+\emptyset; j+\emptyset;...

procedure P(q, r); integer q, r; integer i, j, k;

begin i=x+2; j+y-1; k+0;

...A[q+i]=A[r-(j+k)];...

end

begin integer i, x^-, z;

i^-, j^-, k;

begin i^-+x+\emptyset; j^-+y-1; k+\emptyset;

...A[(x^-+i)+i^-]*A[z+j]-(j^-+k)];...

end

end
```
7.1.2 Partial Evaluation

7.1.2.a example

When the actual parameters \(\text{\textbar} \) of a procedure call
\(P(\text{\textbar}) \) are substituted for the formal parameters \(\text{\overline{\text{\textbar}}} \)
in the body \(B(\text{\overline{\text{\textbar}}, \text{\textbar}, \text{\textbar}_0}) \) of the procedure declaration
\(P(\text{\overline{\text{\textbar}}}) \), a piece of substituted text \(B(\text{\textbar}, \text{\textbar}, \text{\textbar}_0) \)
results which can frequently be simplified. For
example, let \(P \) be declared as follows:

\[
\text{integer procedure Modulo\textbar x,y\textbar; integer \textbar x,y;}
\]
\[
\text{Return (if } y=0 \text{ then } x \text{ else } x-y*\text{Entier}(x/y))
\]

and suppose we expand the call

\[
\ldots \text{Modulo}(A[i]+1, 2)\ldots
\]

The substituted body becomes

\[
[\text{Return (if } 2=0 \text{ then } A[i]+1 \text{ else (A[i]+1) - Entier((A[i]+1)/2))]}
\]

But since \(2=0 \) evaluates to false, we can use
\[
\text{if false then } A \text{ else } B \Rightarrow B \text{ to simplify this to:}
\]

\[
[\text{Return}(A[i]+1-2*\text{Entier}((A[i]+1)/2))]
\]

Then, using \([\text{Return}(x)] \Rightarrow x \), we get the final form:

\[
\ldots (A[i]+1) - 2*\text{Entier}((A[i]+1)/2)\ldots
\]
7.12.b The Inside-Out Method

Partial evaluation of a piece of program text may be accomplished using an "inside-out" method which simplifies program constituents in the order of deeper to shallower levels of nesting. This works as follows:

1. First, perform all possible arithmetic on constants. Eg. 2*3+5 => 11, x*sign (6) => x*1 (see §11.1).

2. Second, perform algebraic simplifications, particularly elimination of algebraic identities (as in x*1 => x, y+0 => y, 0*x => 0) and trivial cancellations (as in x/x => 1, 2y-3y+y => 0), (see §11.1).

3. Third, simplify relational expressions (eg. 3>0 => true, x≠x => false, x-y<0 => x<y, -a.-b => a>b), (see 11.2).

4. Fourth, simplify Boolean expressions (eg. (x>0)∧(true∨false) => (x>0), ¬(true∨a) => ¬(true) => false. In particular, Boolean constants true and false that are operands of Boolean operators may be eliminated (see §11.3).
5. Finally, simplify control forms (eg.
 \[
 \text{if true then } x \text{ else } y \Rightarrow x, \text{ while false do } S \Rightarrow \text{empty}
 \]
 Whenever a function \(f(\vec{a}) \) is called with actual parameters \(\vec{a} = a_1, a_2, \ldots, a_n \) that are all constants, the entire call will simplify to a constant (by normal procedure evaluation).

8. The Mechanics of the Empty and Undefined Program Forms

8.1 Empty Introduction and Elimination

The **empty** program is an identity under program transformation, much the same way that 0 and 1 are identities under addition and multiplication \((x+0 = x, x*1 = x) \). The **empty** program is created by transformations that map program fragments that do nothing into the explicit constant **empty**. For instance,

\[
\text{while false do } S \Rightarrow \text{empty}
\]

and

\[
\text{if false then } A \Rightarrow \text{empty}
\]

The **empty** program combines with program syntax in which it is embedded according to certain simplification laws.
8.1.a Empty Block Elimination

\[
\begin{align*}
\text{begin} \\
\empty & \Rightarrow \empty \\
\text{end}
\end{align*}
\]

8.1.b Empty For Statement Elimination

provided \(i\) is local to the for-statement:

\[
\text{for } i = a \text{ step } b \text{ until } c \text{ do empty; } \Rightarrow \text{ empty}
\]

8.1.c Empty Statement and Empty Declaration Elimination

\[
\begin{align*}
\text{begin } S_1;S_2;\ldots;S_{i-1};\empty;S_{i+1};\ldots;S_n \text{ end } \Rightarrow \\
\text{begin } S_1;S_2;\ldots;S_{i-1};S_{i+1};\ldots;S_n \text{ end}
\end{align*}
\]

As an example of the latter transformation, note that a labelled empty statement can be eliminated by transferring its label to the following statement:

\[
\begin{align*}
\ldots \\
L: \empty, \Rightarrow L:S_2, \\
S_2; \\
\ldots
\end{align*}
\]
8.1.d **Empty Procedure Elimination**

```
procedure P(a);<declarations>;empty=>empty
```

provided all calls P(a) in P are also replaced
by empty everywhere in the scope of the declaration
of P. **WHAT ABOUT A+P(a) => A+empty because of this?**
Perhaps: default empty for all the questions? or A+empty => A?

8.1.e **Empty While-Do and Repeat-Until Elimination**

provided b is side-effect-free:

```
while b do empty => empty
```

provided b is side-effect-free:

```
repeat empty until b => empty
```

8.2 **Undefined Introduction and Elimination**

The undefined program (or, special case, the undefined
value) can result from executing or transforming certain
program forms. For instance, if a=0 then

```
da^0 => undefined ,           
```

```
\alpha/a => undefined , and
```

```
Log(a) => undefined
```
The undefined value can propagate. Whenever an operand of an operator, or an argument of a function is undefined, then the result is undefined.

8.2.a \[\text{a <operator> undefined} \Rightarrow \text{undefined} \]
\[\text{undefined <operator> a} \Rightarrow \text{undefined} \]
\[\text{<operator> undefined} \Rightarrow \text{undefined} \]
\[f(a_1, a_2, \ldots, a_n) \Rightarrow \text{undefined if } a_i = \text{undefined} \]
\[\text{for some } i \text{ such that } (1 \leq i \leq n). \]

8.2.b When \text{undefined} is a body of an iterative control form, or a procedure, the result is \text{undefined}.

\[\text{while } b \text{ do undefined} \Rightarrow \text{undefined} \]

\[\text{repeat undefined until } b \Rightarrow \text{undefined} \]

\[\text{for } v \leftarrow a \text{ step } b \text{ until } c \text{ do undefined} \Rightarrow \text{undefined} \]

8.2.c When \text{undefined} is an arm of a conditional then the result is \text{undefined} unless the arm is not executable.

Thus, for example,

\[\text{if } x > 0 \text{ then undefined else } P(a) \Rightarrow \text{undefined} \]
\[\text{if } \text{false} \text{ then undefined else } P(a) \Rightarrow P(a) \]
\[\text{if } \text{true} \text{ then } x \text{ else undefined} \Rightarrow x \]
8.2.d A call in a procedure which has not been declared is undefined.

provided P has not been declared:

\[P(a) \rightarrow \text{undefined} \]

8.2.e example

In general, the undefined program form may appear as a result of an undefined operation, but it may, in turn, be eliminated through transformations of the text in which it is embedded. For instance, expanding the call Modulo(5,0) in the function

\[\text{integer procedure Modulo}(x,y); \text{integer } x,y; \]

\[\text{Return (if } y=0 \text{ then } x \text{ else } x-y*\text{Entier}(x/y)) \]

gives:

\[\text{Return (if } 0=0 \text{ then } 5 \text{ else } 5-0*\text{Entier}(5/0)) \]

\[8.2 \]

\[\text{Return (if } \text{true then } 5 \text{ else } 5-0*\text{Entier (undefined)) } \]

\[8.2.a \]

\[\text{Return (if } \text{true then } 5 \text{ else } 5-0*\text{undefined} \]

\[8.2.a \text{ twice} \]

\[\text{Return (if } \text{true then } 5 \text{ else } \text{undefined} \]

\[8.2.a \]

\[\text{Return } (5) \]

\[5 \]

In strict inside-out evaluation by mechanical means, it is convenient to be able to deal with the undefined program.
9.1 Reduction versus Recognition

Reduction is a transformation that maps programs in a language \(L \) into programs in a proper subset \(L' \) of \(L \).

For instance, the reductive transformation:

\[
\text{while } b \text{ do } S \Rightarrow L: \text{if } ^\text{wrong b} \text{ then }
\]

\[
\begin{align*}
\text{begin} \\
S; \\
\text{go to } L \\
\text{end}
\end{align*}
\]

maps programs written in a superset of Algol 60 into pure Algol 60.

Recognition is the inverse of reduction. It replaces program fragments written in a language \(L' \) with equivalent constructions in an extension \(L \) of \(L' \) (where \(L' \subset L \)).

An example of recognition mapping Algol 60 into an extended Algol 60 is:

\[
\text{for } i+1 \text{ step } 1 \text{ until } N \text{ do } \Rightarrow \text{repeat } A[i] \leftarrow 0; i \leftarrow i+1 \text{ until } i > N
\]

\[
A[i] \leftarrow 0
\]
Reduction can be used to map programs written in an extension E of a base language B into programs written only in B. If accompanied by simplification, reduction can produce increased efficiency, but this may occur at the expense of reduced legibility. Conversely, recognition may improve legibility at the expense of efficiency.

While the transformations in §9.2 are given as reductions, they may be applied in the reverse direction to produce recognitions.

9.2 Reductions

9.2.1 Parallel Assignments

A parallel assignment takes the form

\[(x_1, x_2, \ldots, x_n) + (e_1, e_2, \ldots, e_n)\]

and assigns the values of \(e_i\) to \(x_i\) all at once (for \(1 \leq i \leq n\)). For instance, \((x, y) + (y, x)\) exchanges the values of \(x\) and \(y\).

Provided \(x_1, x_2, \ldots, x_n\) are variables, \(x'_1, x'_2, \ldots, x'_n\) are distinct new variables not used elsewhere in the program, and \(e_i\) are side-effect-free (\(1 \leq i \leq n\)):
\((x_1, x_2, \ldots, x_n, e_1, e_2, \ldots, e_n) \Rightarrow x_1 \cdot e_1; x_2 \cdot e_2; \ldots; x_n \cdot e_n;\)
\(x_1^{*} + x_2^{*}; \ldots; x_n^{*} + x_n^{*};\)

If some of the \(x_i\) are subscripted expressions, then this reduction is valid provided no \(x_j\) is used in a subscript in \(x_i\) for \(1 < j < i\). For instance,
\((A[i], i) + (i, A[i]) \Rightarrow A[i] + i; i^{*} + A[i]; A[i] + A^{*}[i]; i + i^{*}\)
is valid, but \((i, A[i]) + (A[i], i) \Rightarrow i^{*} + A[i]; A^{*}[i] + i; i + i^{*}; A[i] + A^{*}[i]\) is invalid

(Minimizing the number of temporary variables used to serialize a parallel assignment has been shown to be NP-complete by R. Sethi[1]).

9.2.2 Iterators

9.2.2a example

provided \(A\) is an array \([1:N, 1:M]\);

\(\text{for } x \in \text{subscripts of } A \text{ do } A[x] + 0 \Rightarrow\)
\(\text{for } i + 1 \text{ step } 1 \text{ until } N \text{ do}\)
\(\text{for } j + 1 \text{ step } 1 \text{ until } M \text{ do } A[i, j] + 0;\)
9.2.2.b example (printing prime pairs between N and M)

\[
\text{for } x \in (\text{the set of odd integers between } N \text{ and } M) \text{ do }
\]

\[
\iff \text{((x) is prime) and ((x+2) is prime)} \then
\text{Print}(x, \text{ newline}, x+2, \text{ newline})
\]

\[
\Rightarrow \quad [x+2 ^ \text{Entier}(N/2)+1;
\text{while } x \leq M \text{ do }
\]

\[
\begin{align*}
\text{begin} \\
\iff \text{((x) is prime) and ((x+2) is prime)} \\
\then \text{Print}(x, \text{ newline}, x+2, \text{ newline}); \quad x+x+2 \\
\text{end }]
\end{align*}
\]

9.2.2.c remark The use of high level iteration clauses such as \(x \in \text{(Subscripts of } A) \) or \(x \in \text{(The set of odd integers)} \) can sometimes make a program easier for people to read since the "key idea" is described directly rather than being buried in the mechanics of sequencing. Using high-level iterators can occasionally make program text more concise, since a large amount of equivalent low-level program text is sometimes required to express the same idea.

If an iteration clause can be given a perfectly precise underlying meaning by means of mechanical transformation, there is no reason not to use
it in rendering high-level program text more legible and concise for people.

9.2.3 Zahn and Dahl Loop Reduction

We use the form of Zahn and Dahl loops given by Knuth [2].

9.2.3.a Zahn Loop Reduction

\[
\text{loop until } \langle\text{event}\rangle_1 \text{ or } \ldots \text{ or } \langle\text{event}\rangle_n; \\
\langle\text{statement list}\rangle_0; \\
\text{repeat; } \\
\text{then } \langle\text{event}\rangle_1 \rightarrow \langle\text{statement list}\rangle_1; \\
\vdots \\
\langle\text{event}\rangle_n \rightarrow \langle\text{statement list}\rangle_n; \\
\text{end}
\]

\[\langle\text{event}\rangle_1 + \langle\text{event}\rangle_2 + \ldots + \langle\text{event}\rangle_n + \text{false;}
\]

\[
\text{loop: } \int \langle\text{statement list}\rangle_0; \\
S_1 \\
go \text{ to loop;}
\]

\[
\text{next: if } \langle\text{event}\rangle_1 \text{ then } \langle\text{statement list}\rangle_2 \text{ else } \\
\ldots \\
\text{ if } \langle\text{event}\rangle_n \text{ then } \langle\text{statement list}\rangle_n;
\]

Is this a correct interpretation of the loop type? Check the substitution on the next page.
where the substitution \(S_1 \) is given by

\[
S_1 = \{ (<\text{event}>, i, [<\text{event}>, i+\text{true}; \text{go to next}]) | (1 \leq i \leq n) \}
\]

and where \text{loop} and \text{next} are distinct new labels not appearing elsewhere in the program.

9.2.3.b Dahl Loop Reduction

\[\text{loop; } \tilde{S}; \text{while } B; \tilde{T}; \text{repeat; }\]

\[
\downarrow
\]

\[L1: [\tilde{S}];\]

\[\text{if } \neg B \text{ then go to } L2;\]

\[\tilde{T}; \text{ go to } L1;\]

\[L2: \text{empty}\]

where \(\tilde{S} \) and \(\tilde{T} \) may be sequences of one or more statements and where \(L1 \) and \(L2 \) are distinct new labels not used elsewhere in the program.
10. High Level Transformations

10.1 Eliminating Search Exhaustion Tests by Data Structure Extension

10.1.1 example (See Introduction (pages 4-7) for explanation):

```
procedure Search(T, X); array T[1:N]; integer i;
begin i=N;
while i>0 do if T[i]=X then Return(true) else i=i-1;
Return(false)
end

procedure Search(T, X); array T[0:N]; integer i;
begin T[0]=X; i=N;
while T[i]≠X do i=i-1;
Return(i≠0)
end
```

10.2 Recursion Removal

10.2.1 Replacing the Final Call With a Go To

10.2.1.a example (of printing a binary tree T composed of nodes which are either empty, or contain an Info field which gives information to be printed, and Left and Right Subtree fields which give pointers to left and right subtrees, (cf. Knuth [2], p.281)).

```
procedure TreePrint(T); binary tree T; value T;
begin
if Empty(T) then Return;
TreePrint(LeftSubTreeOf(T));
Print(Info(T));
TreePrint(RightSubTreeOf(T))
end
```
procedure TreePrint(T); binary tree T; value T;
begin
 if Empty(T) then Return;
 L: TreePrint(LeftSubTreeOf(T));
 Print(Info(T));
 T=RightSubTreeOf(T); go to L
end

10.2.2 Replacing a Recursive Call Using an Explicit Stack

10.2.2.a example (see Knuth [2], pp. 281-282):

The latter program in §10.2.1.a transforms to:

procedure TreePrint(T); binary tree T; value T;
begin stack S; S=emptystack;
 L1: while ~Empty(T) do
 Push(T)onto(S); T=LeftSubTreeOf(T);
 go to L1;
 L2:T=TopOf(S); Pop(S);
 Print(Info(T));
 T=RightSubTreeOf(T)
 if ~Empty(S) then go to L2;
end

remark This program contains an instance of a jump into the middle of a loop. For an interesting defense of this "mortal sin", see Knuth [2], p. 282.
10.2.3 Replacing a Descending Recursion with a Descending Iteration

10.2.3.a example

```plaintext
procedure Factorial(N); integer N; value N;
Return( if N=0 then 1 else N*Factorial(N-1))

↓

procedure Factorial(N); integer N; value N;
begin integer i;
Factorial+1;
while N>0 do
    [Factorial+N*Factorial;
    N=N-1
end
```

remark Recursion removal can be done mechanically by introducing explicit stacks. Transformation to equivalent, stackless, iterative forms has received frequent attention in the literature. See for example, McCarthy [3], Manna and Waldinger[5], and Darlington and Burstall[4]. We do not attempt here a representative summary of its many facets.

10.3 Refinement of Abstract Data Structures

10.3.1 example (the set membership predicate X \(\in \) Y):

Given an algorithm P written using set notation (e.g. using expressions such as \(A \cap (B \cup C) \), or if \(X \in Y \) then \(C \cup C \cup \{X\} \)), we may wish to choose one of many possible underlying representations R for sets, and to map P into a concrete program using R. Here, we exemplify what might occur if X were a character, Y were a set of characters, and we chose to represent Y using a list.
Thus, we assert:

1. Let \((X)\) be a (Character)
2. Let \((Y)\) be a (Set of (Character)s)
3. Represent \((Y)\) by a (List)

Now we apply the following deductive assertion to statement (3):

\[
\text{if (the Representation of} \ (Y) \ \text{is a (List)) then} \\
\text{Assert (the Representation of} \ (Y) \ \text{is} } \\
\text{(Finitely Enumerable))}
\]

As a consequence, a new statement can be made:

4. The Representation of \((Y)\) is (Finitely Enumerable)

We now examine the following transformation:

provided (There exists a \((Z)\) such that
1. \((X)\) is a \((Z)\)
2. \((Y)\) is a set of \((Z)s)\)
3. (The Representation of \((Y)\) is (Finitely Enumerable)):

\[
(X \epsilon Y) \Rightarrow \text{[for each } a \text{ such that } a \epsilon Y \text{ do} } \\
\text{if } x=a \text{ then Return(true); Return(false)]}
\]

The enabling condition of this transformation is satisfied by assertions (1), (2) and (4) above. Hence, \((X \epsilon Y)\) can be rewritten as:

\[
(5) \text{[for each } a \text{ such that } a \epsilon Y \text{ do} } \\
\text{if } x=a \text{ then Return(true); Return(false)]}
\]
Now the following transformation applies:

provided The Representation of \((Y)\) is a \((\text{List})\):

\[
\begin{align*}
\text{for each } a \text{ such that } a \in Y & \text{ do } S(a) \implies \\
[\text{list } t; \ t \leftarrow Y; \\
\quad \text{while } t \neq \text{NIL do} \\
\quad \quad \text{begin} \\
\quad \quad \quad S(\text{head}(t)); \\
\quad \quad \quad t \leftarrow \text{tail}(t) \\
\quad \quad \text{end }]
\end{align*}
\]

It maps the last given form of the program in (5) into:

\[
\begin{align*}
[\text{list } t; \ t \leftarrow Y; \\
\quad \text{while } t \neq \text{NIL do} \\
\quad \quad \text{begin} \\
\quad \quad \quad \text{if } x = \text{head}(t) \text{ then Return(true);} \\
\quad \quad \quad t \leftarrow \text{tail}(t) \\
\quad \quad \text{end }; \\
\text{Return(false) }
\end{align*}
\]

The latter piece of text is the concrete implementation of the predicate \(X \subseteq Y\), when \(Y\) is a list.

If the representation for \(Y\) had been a bit-vector, or an array instead of a list, the underlying concrete code generated would have been different. For example, provided The Representation of \((Y)\) is \((\text{Array}[M:N])\):

\[
\begin{align*}
\text{for each } a \text{ such that } a \in Y & \text{ do } S(a) \implies \\
[\text{integer } i; \\
\quad \text{for } i + M \text{ step 1 until } N \text{ do } S(Y[i])]
\end{align*}
\]
is a transformation which applies if \(Y \) is represented by a linear array. This transformation maps (5) above into the following concrete underlying program text:

\[
\begin{align*}
\text{[integer } i; \\
\text{for } i+M \text{ step 1 until } N \text{ do} \\
\quad \text{if } X=Y[i] \text{ then Return(true);} \\
\quad \text{Return(false)}]
\end{align*}
\]

10.3.2 remark In a more extensive fashion, Schwartz[6] has shown how abstract operations on sets can be implemented concretely, and the book by Dijkstra, Dahl, and Hoare[7] gives numerous examples of refinement of abstract data into concrete representations.

10.4 Replacing Loops that Sum Polynomials with Polynomials of Higher Degree

10.4.1 The general idea of the transformation is;

provided \(f \) is a polynomial of degree \(n \):

\[
\begin{align*}
S+0; \\
\text{for } i+a \text{ step } b \text{ until } c \text{ do for } i+a \text{ step } b \text{ until } c \text{ do} \quad \Rightarrow \quad S+g(c) \\
S+S+f(i) \quad \text{where } g \text{ is a polynomial of degree } n+1.
\end{align*}
\]

10.4.2 example

\[
\begin{align*}
S+0; \\
\text{for } i+1 \text{ step 1 until } n \text{ do for } i+1 \text{ step 1 until } n \text{ do} \quad \Rightarrow \quad S+(n+1)^2n^2 \\
S+S + 3i^2 - i/2
\end{align*}
\]

A list of some of the more common useful loops might be

\[
\begin{align*}
\frac{n(n+1)}{2}; \quad \Sigma i; \quad \Sigma i^2; \quad \Sigma i^3; \quad \ldots
\end{align*}
\]
In many cases, the polynomial \(g \) can be determined using the calculus of finite differences (see Goldberg [8] for details).

10.5 Procedural Abstraction

Naive programmers often repeat the same, or nearly the same, sequence of instructions. For example, in the computation of the Cosine of the angle between two 3-vectors \(v \) and \(w \) one might find the code:

\[
S\leftarrow 0; \\
\text{for } i + 1 \text{ step 1 until } 3 \text{ do} \\
\quad S\leftarrow S + v[i]^*w[i]; \\
R\leftarrow 0; \\
\text{for } i + 1 \text{ step 1 until } 3 \text{ do} \\
\quad R\leftarrow R + v[i]^*v[i]; \\
T\leftarrow 0; \\
\text{for } i + 1 \text{ step 1 until } 3 \text{ do} \\
\quad T\leftarrow T + w[i]^*w[i]; \\
\text{Result}\leftarrow S/(R*T)
\]

By recognizing the common loop one can replace this code by the following:

\[
\text{real procedure Dot}(x,y);\text{real array } x,y[1:3]; \\
\text{begin integer } i; \\
\quad \text{Dot}\leftarrow 0; \\
\quad \text{for } i + 1 \text{ step 1 until } 3 \text{ do } \text{Dot} \leftarrow \text{Dot} + x[i]^*y[i]; \\
\quad \text{end;}
\]

\[
\text{Result}\leftarrow \text{Dot}(v,w)/(\text{Dot}(v,v)^*\text{Dot}(w,w))
\]
Procedural abstraction is the inverse of expansion of a procedure call into a substituted, partially evaluated, procedure text. A program to identify unifiable pieces of code must be able to take a set of similar program fragments (say similar with respect to structure), P_1, P_2, \ldots, P_n, and to construct a least common generalization.

11. Manipulation of Expressions

11.1 Arithmetic Expressions

11.1.1 Performing Arithmetic on Constants
Let a and b be arithmetic constants, and let $\text{execute}(F)$ be the result of evaluating program fragment F to produce a value. Let a be an operator such that $a \in \{+, -, \times, \div, \lt, \leq, \geq, \gt, \sin, \cos, \abs, \ent, \log, \exp, \sign\}$. Then,

\[
(\text{aa}) \Rightarrow \text{execute}(aa)
\]

\[
(a\text{ab}) \Rightarrow \text{execute}(a\text{ab})
\]

11.1.2 Eliminating Arithmetic Identities

\[
a + 0 \Rightarrow a
\]

\[
a - 0 \Rightarrow a
\]

\[
0 + a \Rightarrow a
\]

\[
0 - a \Rightarrow -a
\]

\[
a \times 1 \Rightarrow a
\]

\[
a / 1 \Rightarrow a
\]

\[
1 \times a \Rightarrow a
\]

\[
0 / a \Rightarrow 0
\]

\[
0 + a \Rightarrow 0
\]

\[
a \times 0 \Rightarrow 0
\]

\[
\text{remark: See §8.2 for cases that yield an undefined result.}
\]

\[
a + 0 \Rightarrow 1
\]

\[
1 + a \Rightarrow 1
\]

\[
a + 1 \Rightarrow a
\]
11.1.3 Trivial Cancellations

\[x-x \Rightarrow 0 \]
\[x+(-x) \Rightarrow 0 \]
\[x/x \Rightarrow 1 \]

11.1.4 Eliminating Unary Minus

\[-(a) \Rightarrow a \]
\[(-a)+(-b) \Rightarrow -(a+b) \]
\[(-a)-(-b) \Rightarrow b-a \]
\[(-a)*(-b) \Rightarrow a*b \]
\[(-a)/(b) \Rightarrow a/b \]
\[-(a)+b \Rightarrow b-a \]
\[a+(-b) \Rightarrow a-b \]
\[a-(b) \Rightarrow a+b \]

11.1.5 Clearing Rational Fractions

\[(a/b)*(d/c) \Rightarrow (a*c)/(b*d) \]
\[(a/b)/(c/d) \Rightarrow (a*d)/(b*c) \]
\[(a/b)*c \Rightarrow (a*c)/b \]
\[c*(a/b) \Rightarrow (a*c)/b \]
\[(a/b)/c \Rightarrow a/(b*c) \]
\[c/(a/b) \Rightarrow (b*c)/a \]
\[(a/b)+N \Rightarrow (a+N)/(b+N) \]
\[(a/b)+(c/d) \Rightarrow (a*d+b*c)/(b*d) \]
\[(a/b)-(c/d) \Rightarrow (a*d-b*c)/(b*d) \]
\[(a/b)+c \Rightarrow (a+c*b)/b \]
\[(a/b)-c \Rightarrow (a-c*b)/b \]
\[a-(b/c) \Rightarrow (a*c-b)/c \]
\[a+(b/c) \Rightarrow (a*c+b)/c \]
11.1.6 Suggestions for Simplifying Rational Forms

(a) Perform arithmetic on constants (§11.1.1).

(b) Eliminate identities (0 and 1) and perform trivial cancellations (§11.1.2 and §11.1.3)

(c) Eliminate unary minus (§11.1.4)

(d) Clear fractions (§11.1.5). Now the expression is either in the form P or the form P/Q where P and Q are free of division operators.

(e) Multiply out P and Q, collect like terms, and cancel terms where possible.

(f) Try to factor P and Q and remove the polynomial gcd.

(g) Optionally express polynomials in the numerator (and denominator, if applicable) using Horner's Rule for quick evaluation. E.g.

\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \Rightarrow \]
\[a_0 + x^* (a_1 + x (a_2 + \ldots x (a_n) \ldots)) \]

11.1.7 remark The above algebraic transformations produce only mild simplifications of algebraic expressions. These are only the most rudimentary and skeletal indications of the sort of manipulations required. Not only is algebraic simplification unsolvable, in general, it requires a sizable amount of sophisticated code, in particular cases. The approach of using only pattern-directed transformations such as those above has been tried by Fenichel and found to be deficient in several respects. The code for the MACSYMA System, a sophisticated algebraic manipulation system, amounts to over 300,000 words on the DEC PDP-10.
This Catalogue does not aspire to swallow the whole field of algebraic manipulation as a special case of program manipulation, but instead emphasizes program transformations outside the realm of conventional algebraic manipulation.

11.2 Relational Expressions

11.2.1 Relational Simplifications

We define the following set: \(\langle \text{rel} \rangle = \{<, \leq, =, \neq, \geq, >\} \).

11.2.1.a Cancellations:

\[a \cdot c \ <\text{rel}\ >\ b \cdot c \Rightarrow a \ <\text{rel}\ >\ b \]

provided \(c > 0 \):

\[a \cdot c \ <\text{rel}\ >\ b \cdot c \Rightarrow a \ <\text{rel}\ >\ b \]

11.2.1.b Simplifications with 0 and 1

\[a - b \ <\text{rel}\ >\ 0 \Rightarrow a \ <\text{rel}\ >\ b \]

\[0 \ <\text{rel}\ >\ a - b \Rightarrow b \ <\text{rel}\ >\ a \]

provided \(b > 0 \):

\[a / b \ <\text{rel}\ >\ 1 \Rightarrow a \ <\text{rel}\ >\ b \]

\[1 \ <\text{rel}\ >\ a / b \Rightarrow b \ <\text{rel}\ >\ a \]

provided \(a > 0 \) and \(b > 0 \):

\[(1 / a) \ <\text{rel}\ >\ (1 / b) \Rightarrow b \ <\text{rel}\ >\ a \]

11.2.1.c Simplifications to true and false

\[a = a \Rightarrow \text{true} \]

\[a \neq a \Rightarrow \text{false} \]

\[a > a \Rightarrow \text{false} \]

\[a < a \Rightarrow \text{false} \]

\[a \geq a \Rightarrow \text{true} \]

\[a \leq a \Rightarrow \text{true} \]

\[a > a \Rightarrow \text{false} \]

\[a < a \Rightarrow \text{false} \]
11.2.2 Arithmetic Negations of Relations

\[-a < -b \implies a > b\]
\[-a \leq -b \implies a \geq b\]
\[-a > -b \implies a < b\]
\[-a \geq -b \implies a \leq b\]
\[-a = -b \implies a = b\]
\[-a \neq -b \implies a \neq b\]

11.2.3 Logical Relational Negations

\[\neg(a = b) \implies a \neq b\]
\[\neg(a \neq b) \implies a = b\]
\[\neg(a < b) \implies a \geq b\]
\[\neg(a \leq b) \implies a > b\]
\[\neg(a > b) \implies a \leq b\]
\[\neg(a \geq b) \implies a < b\]

11.2.4 Relational Synonyms

Let \(<ge>\{\ge, \geq\}\) and let \(<le>\{\le, \leq\}:\)

\[(a \leq b) \implies (a < b) \lor (a = b)\]
\[(a \geq b) \implies (a > b) \lor (a = b)\]

\[a = b \implies (a = b) \land (a = c)\]
\[a <_{ge} b <_{ge} c \implies (a <_{ge} b) \land (b <_{ge} c)\]
\[a <_{le} b <_{le} c \implies (a <_{le} b) \land (b <_{le} c)\]

11.2.5 Combining Ranges

11.2.5.a examples

\[(as \leq sb) \land (as \leq sd) \implies \max(a, c) \leq x \leq \min(b, d)\]
\[(as \leq sb) \lor (as \leq sd) \implies \text{if } (b \geq a) \land (asd) \text{ then } \min(a, c) \leq x \leq \max(b, d) \text{ else (as \leq sb) \lor (as \leq sd)}\]

provided \(a > b: (as \leq sb) \implies \text{false}\)

\[\text{etc.}\]
11.3 Boolean Expressions

11.3.1 Eliminating Boolean Constants

\[
\begin{align*}
\text{true} \land a & \Rightarrow a \\
\text{true} \land \text{false} & \Rightarrow \text{false} \\
\text{false} \land \text{false} & \Rightarrow \text{false} \\
\text{true} \lor a & \Rightarrow \text{true} \\
\text{true} \lor \text{false} & \Rightarrow a \\
\text{false} \lor \text{false} & \Rightarrow \text{false} \\
\text{false} \lor \text{false} & \Rightarrow a
\end{align*}
\]

\[
\begin{align*}
\sim \text{true} & \Rightarrow \text{false} \\
\sim \text{false} & \Rightarrow \text{true}
\end{align*}
\]

11.3.2 Boolean Simplifications and Equivalences

\[
\begin{align*}
\text{a} \land \text{b} & \Leftrightarrow \text{b} \land \text{a} & \text{Commutative Laws} \\
\text{a} \lor \text{b} & \Leftrightarrow \text{b} \lor \text{a}
\end{align*}
\]

\[
\begin{align*}
\text{a} \land (\text{b} \land \text{c}) & \Leftrightarrow (\text{a} \land \text{b}) \land \text{c} & \text{Associative Laws} \\
\text{a} \lor (\text{b} \lor \text{c}) & \Leftrightarrow (\text{a} \lor \text{b}) \lor \text{c}
\end{align*}
\]

\[
\begin{align*}
\text{a} \land \text{a} & \Leftrightarrow \text{a} & \text{Idempotent Laws} \\
\text{a} \lor \text{a} & \Leftrightarrow \text{a}
\end{align*}
\]

\[
\begin{align*}
\text{a} \land (\text{b} \lor \text{a}) & \Leftrightarrow (\text{a} \land \text{b}) \lor (\text{a} \land \text{a}) & \text{Distributive Laws} \\
\text{a} \lor (\text{b} \land \text{a}) & \Leftrightarrow (\text{a} \lor \text{b}) \land (\text{a} \lor \text{a})
\end{align*}
\]

\[
\begin{align*}
\sim (\text{a} \land \text{b}) & \Leftrightarrow (\sim \text{a}) \lor (\sim \text{b}) & \text{DeMorgan’s Laws} \\
\sim (\text{a} \lor \text{b}) & \Leftrightarrow (\sim \text{a}) \land (\sim \text{b})
\end{align*}
\]

\[
\begin{align*}
\sim \sim \text{a} & \Leftrightarrow \text{a} & \text{Double Negation Law} \\
\text{a} \land (\text{a} \lor \text{b}) & \Leftrightarrow \text{a} & \text{Subsumption Laws} \\
\text{a} \lor (\text{a} \land \text{b}) & \Leftrightarrow \text{a}
\end{align*}
\]
\[\neg a \vee (a \land b) \iff (\neg a) \lor b \quad \text{Cancellation Laws} \]
\[\neg a \land (a \lor b) \iff (\neg a) \lor b \]
\[(a \land \neg b) \lor (a \lor b) \iff a \quad \text{Ground Resolution Laws} \]
\[(a \lor \neg b) \land (a \lor b) \iff a \]
\[(a \lor a) \iff \text{true} \quad \text{Excluded Middle Law} \]
\[(a \land \neg a) \iff \text{false} \quad \text{Contradiction Law} \]

11.3.3 \textbf{remark} Boolean simplification is at least as hard as the NP-Complete problems and no method of simplification is known requiring less than exponential time.
12. Appendices

12.1 Notational Conventions

12.1.1 Sequences

Vector notation is used to denote sequences
of statements or lists of identifiers or arguments:

- statement sequences: $\vec{S} = S_1; S_2; \ldots; S_n$
- identifier sequences: $\vec{v} = v_1, v_2, \ldots, v_n$
- argument sequences: $\vec{a} = a_1, a_2, \ldots, a_n$

12.1.2 Substitution

A Substitution is a set of ordered pairs of the
form (n_i, X_i), where n_i is a name, and X_i is an expression
to be substituted for n_i.

$$S = \{(n_i, X_i) \mid n_i \text{ are distinct names}\}$$

Let F be a program fragment containing instances of
the names n_i. Then the result of substituting X_i for
every occurrence of n_i simultaneously and uniformly
in F is denoted:

$$\int_{S}^{F}$$

This is pronounced the "substitution of F with
respect to S".

For example, Let $S = \{(x, a+b), (y, m\cdot k), (z, F(y))\}$
and let $F = \text{begin } q+x\cdot z; \text{ if } b \text{ then Return}(y) \text{ end }$. Then,

$$\int_{S}^{F} = \text{begin } q+(a+b)\cdot F(y); \text{ if } b \text{ then Return}(m\cdot k) \text{ end }$$
12.1.3 Simplification

The simplification of a program fragment F with respect to a set of transformations x, is denoted

$$\nabla_x F$$

or, where the simplification transformations are apparent from context, just simply ∇F.

12.2 Programming Language Forms

12.2.1 Use of Algol 60 Conventions

The syntax and terminology used in the Catalogue follow Algol 60 conventions, except for a few extensions, which have been added to provide coverage of structured programming syntax.

12.2.2 Structured Programming Extensions

12.2.2.a While-Do Forms:

$$\textbf{While } <\textbf{Boolean Expression}> \textbf{Do } <\textbf{Statement}>$$

12.2.2.b Repeat-Until Forms:

$$\textbf{Repeat } <\textbf{Statement}> \textbf{ Until } <\textbf{Boolean Expression}>$$

12.2.2.c Return Expressions and Statements:

To exit from the execution of a procedure $P(\hat{a})$, the statement form \textbf{Return} can be used. To exit from a procedure $P(\hat{a})$ and, simultaneously, to return the value of the expression E the expression $\textbf{Return}(E)$ can be executed. Executing $\textbf{Return}(E)$ has the same effect as executing $\textbf{begin } P+E; \textbf{Return} \textbf{ end}$ where P is the procedure identifier.
12.2.3 Synonyms for Begin-End Brackets

Any form of parentheses or brackets can be used to stand for Begin-End pairs in Algol 60. The Catalogue uses such bracketing as

\[
\ldots [\ldots] \ldots
\]

\[
\ldots (\ldots) \ldots
\]

and

\[
\left[S_1; \\
S_2; \\
\vdots \\
\vdots \\
S_n
\right]
\]

In the latter case, indentation and the left square bracket in the margin, together indicate the scope of a Begin-End pair delimiting a compound statement or block.

12.2.4 Return-Intercept Brackets

The special brackets \(\ldots [\ldots] \ldots\) are called "return-intercept brackets". Whenever a Return statement, or a return expression of the form \(\text{Return}(E)\), is executed within return-intercept brackets, control passes to the text immediately surrounding the least enclosing pair of return-intercept brackets, as if the brackets delimited the text of a procedure call. Otherwise, the return-intercept brackets function exactly like Begin-End brackets. Return-intercept brackets can be used to set up "block expressions" as in CPL.
For example, the following text computes $X/\sum_{i=0}^{n} f(i)$:

```pascal
real S; integer i; S=0;
for i=0 step 1 until n do S=S+f(i);
Return(S)
```

12.2.5 **Extended Identifiers and Procedure Calls**

Sequences of identifiers separated by spaces stand for single identifiers, and procedure calls and declarations may be given in the following extended forms:

12.2.5.a **examples** (of extended identifiers)

- the Left Hand Side
- Numerator of X
- Output Buffer

12.2.5.b **examples** (of extended procedure calls)

- Pop(T) From (S)
- Write(M+S) On the (Mag Tape) Device
REFERENCES

May thy Caterpillars

hatch into Butterflies