The Structure of Large Systems
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Purpose of this Work
Source —10 —source program transformations (1976)
~ transformations at wrong level of abstraction
~ procedural transformations a BIG problem
Draco: software construction using components (1984)
- domains
- refinements
- opfimizations (previously transformations)
Problems with Draco
- what constitutes a domain?
- complete refinement every time is unrealistic
How do people cope with this in large systems?

— classical automation analysis
- not a statistical study
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Viewpoint of the Work

"Software Crisis" has not gone away

Crisis is primarily in large systems not small systems
- 60,000 lines not a problem
¥ 4-5 developers

* 2-3 maintainers
* available technology works

* hiring people may be a problem

~ 200,000 lines is a problem
* 10-20 developers and maintainers

* available technology is strained
Building large systems is a social process

Granularity of current reuse is too small
- qQueues ,

- sorfs
- list processing

Find out what granularity is used in current large systems



Method of Data Collection

*  Systems studied:
- CAD/CAM System, 7 years (FORTRAN 800,000 lines)

~  PBX/Digital Network, 3 years (PASCAL 600,000 lines)

- four others similar size, less detail
- no assembly systems

* Efficient automated tools are a requirement

- parser generators (source code, linkage files, MAKE files)
- file management system for large files

- report generators
- diagram generators
- migrating to PCs from mainframes

* Why 1s this work tolerated in the organization?
Quality Control information is a side - effect

- coding standards

- sironger type checking

- intetfintra module flow anaiysis

- reverse engineering
* tightly coupled modules (MIL analysis)
* architectural design diagrams
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Life in the Big System
big systems are 200,000 lines and up

ongoing evolution: ¢ m lete rebuild and restructing
iﬂw m%jor changes ?n unction Hédr "'we bid it, we bLII|t it, it's over"

about one programmer per 10,000-20,000 lines of source code

500,000 line system has a monthly burn rate of
about $250,000.00 per month

naming problems, lost code even with SCC, aliased data,
common data areas

at least "3-fork" development

— new release required every 6 months
- 18 months required to make a substantial change

Nelghbors 8/21/87



Logistic Growth w/Waste Accumulation

tollowing 4 Hods/ for Growth and Décay of Ero/c\?f/cal and Socia/ Systenms

Reln Taagepera, The $tady of Man

|

s(isz)e /
g5 = kS
, dT
L .
time (T)
45 _ = k(M-8)(S-h""W) where
dT

h' = waste accumulation rate
h" = waste virulence

....... - k(M-—S)(S—hIS dT)
where h=hh"
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Oscillations as Development Limits Out
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Code "Reuse" During Maintenance Doldrums
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Sizes and Phases where Problems Occur

ﬂﬂ

— Analxms

____________________________________________ Nq,qne._!sn.ow..w.hx.th.e.,S.!S.‘?m,.d...?.‘.h.@?.. 700,000

Operating

Source / / Architectural Design
Lines | /oot "No one knows how this system works." 400,000
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Architectural Design Structures
Functional Decomposition vs. Layers of Abstraction

and, of course, real programs exhibit both structures ...

15>

what do large systems do?
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Control Flow Branching

Nfumber Nfumber
ﬁoutines . \ Routines
utility "pump
L,/{
er istinct routines er istin ti
m a?l tﬁe routine ! me a?! g il'oﬁ[li%%u nes
small programs large systems
Nfumber NOTE: routine size mean is 220 source lines,
ﬁouﬁnes range is 10 to 500 source lines
|

me ez;rgfcgﬁgg%yr%gnr%suhne
both programs and systems
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Number of Routines
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Number of Routines
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Number of Distinct
Routines which
Call the Routine

Note: don't take
this too seriously,

the branch ratio by |

itself is not strong

Routine Branching Ratios

o seatterplot T~ yjies
\J system \\ AN ///functional
Y utilities NG <~ agents
| AN
_ N
\
subsys
utilities

enough to characterize Number of Distinct Routines which are

a routine.
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Called by the Routine



Subsystems

* subsystems are found by applying a policy to each routine:
— branch ratio w/respect to rest of system
- branch ratio w/respect to subsystem under construction
- shared global data

* subsystems have a regular structure similar to systems
*  subsystems contain 20-150 routines or 4,000 30,000 source lines

*  subsystems are embedding and recursive

* subsystems are the key to reverse engineering and regaining
control of a large system
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System and Subsystem Structure
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Conclusions

ganularity of large systems are subsystems
of 20-150 routines or 4,000~ 30,000 source lines

size of subsystem is approximately the same number
of source lines assigned per programmer only the
mapping is usually not one programmer to one
subsystem

"discovery" of components in existing systems

- very little chance w/no refinement history
- Balzer's "information spreading"
- subsystems are domain artifacts which

have not spread or embedded



Draco Implications

* domain concept justified

* a subsystem resulting from a Draco refinement of a problem
should imply the use of a particular modeling domain. but

the converse Is not true

* partially refined subsystems should be the
library unit managed by Draco — no more complete refinements

* varying architectural design a good idea

* bottom end of the domain hierarchy is not as
important as | once thought — modeling domains

are much more important
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Organizational Context of Draco
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Future

* more work on subsystem extraction and restructuring
* "scan it yourself' kit — a nice application domain

*  Draco rebuild in Ada targeting Ada |
system architecture in Biggerstaft's reusability book
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ENTER ROUTINE (IN SINGLE GUOTES), %DOWN, %UP
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