The Structure of Large Systems

or
"What are all those people I'm paying too much doing anyway?"

by
James Neighbors

Neighbors 8/21/87

Neighbors 8/21/87

Purpose of this Work
Source —10 —source program transformations (1976)
~ transformations at wrong level of abstraction
~ procedural transformations a BIG problem
Draco: software construction using components (1984)
- domains
- refinements
- opfimizations (previously transformations)
Problems with Draco
- what constitutes a domain?
- complete refinement every time is unrealistic
How do people cope with this in large systems?

— classical automation analysis
- not a statistical study

%

Neighbors 8/21/87

Viewpoint of the Work

"Software Crisis" has not gone away

Crisis is primarily in large systems not small systems
- 60,000 lines not a problem
¥ 4-5 developers

* 2-3 maintainers
* available technology works

* hiring people may be a problem

~ 200,000 lines is a problem
* 10-20 developers and maintainers

* available technology is strained
Building large systems is a social process

Granularity of current reuse is too small
- qQueues ,

- sorfs
- list processing

Find out what granularity is used in current large systems

Method of Data Collection

* Systems studied:
- CAD/CAM System, 7 years (FORTRAN 800,000 lines)

~ PBX/Digital Network, 3 years (PASCAL 600,000 lines)

- four others similar size, less detail
- no assembly systems

* Efficient automated tools are a requirement

- parser generators (source code, linkage files, MAKE files)
- file management system for large files

- report generators
- diagram generators
- migrating to PCs from mainframes

* Why 1s this work tolerated in the organization?
Quality Control information is a side - effect

- coding standards

- sironger type checking

- intetfintra module flow anaiysis

- reverse engineering
* tightly coupled modules (MIL analysis)
* architectural design diagrams

Neighbors 8/21/87

Life in the Big System
big systems are 200,000 lines and up

ongoing evolution: ¢ m lete rebuild and restructing
iﬂw m%jor changes ?n unction Hédr "'we bid it, we bLII|t it, it's over"

about one programmer per 10,000-20,000 lines of source code

500,000 line system has a monthly burn rate of
about $250,000.00 per month

naming problems, lost code even with SCC, aliased data,
common data areas

at least "3-fork" development

— new release required every 6 months
- 18 months required to make a substantial change

Nelghbors 8/21/87

Logistic Growth w/Waste Accumulation

tollowing 4 Hods/ for Growth and Décay of Ero/c\?f/cal and Socia/ Systenms

Reln Taagepera, The $tady of Man

|

s(isz)e /
g5 = kS
, dT
L .
time (T)
45 _ = k(M-8)(S-h""W) where
dT

h' = waste accumulation rate
h" = waste virulence

....... - k(M-—S)(S—hIS dT)
where h=hh"

Neighbors 8/21/87

M
size

(8)

dW

—=h'S

dl

size

(8)

of 1, 1972

time (T)

thus W:h’J‘S dT

organizational
limits

Operating
Source

Lines
(not copied)

explosive |
growth™™

Neighbors 8/21/87

Growth Curves of Different Systems equce

critical maintenance) mF’igFgglnvr?gct
mass doldrums complexity
""“"’M““j\ mone
: én wer
roo Law
normal
growth
/ \— ------------- excessive
/f O waste
/ /
z'/ ///)/ \
P | _
Time

Oscillations as Development Limits Out

critical
; mass
organizational | N e
Iirr?its | /KNU N
Operating /
Source j
Lines

(not copied)

Neighbors 8/21/87 T I m e

Code "Reuse" During Maintenance Doldrums

Operating
Source
Lines

organizational
limits

Neighbors 8/21/87

source lines
mcludm? copied
source lihes

managerial "glow"
sets in

..

o source lines

e entered b
/ programmers

Time

Sizes and Phases where Problems Occur

ﬂﬂ

— Analxms

__ Nq,qne._!sn.ow..w.hx.th.e.,S.!S.‘?m,.d...?.‘.h.@?.. 700,000

Operating

Source / / Architectural Design
Lines | /oot "No one knows how this system works." 400,000

Neighbors 8/21/87

Architectural Design Structures
Functional Decomposition vs. Layers of Abstraction

and, of course, real programs exhibit both structures ...

15>

what do large systems do?

Neighbors $/21/87

Control Flow Branching

Nfumber Nfumber
ﬁoutines . \ Routines
utility "pump
L,/{
er istinct routines er istin ti
m a?l tﬁe routine ! me a?! g il'oﬁ[li%%u nes
small programs large systems
Nfumber NOTE: routine size mean is 220 source lines,
ﬁouﬁnes range is 10 to 500 source lines
|

me ez;rgfcgﬁgg%yr%gnr%suhne
both programs and systems

Neighbors 8/21/87

Number of Routines

e B e Bbvlobe omoreesr Ul Y escd B
O Peesr FPlooats § rieess

Foinn s 5 st

P & LT N

3478

0 to 724
6

31

routines
range
average
LA, K o std dev

mia e

called % total cum:% of
LEREE L G e by routines routines routines
0 1 0.02% 0.02% (MAIN routine)
1 2162 62.16% 62.19%
2 442 12.71% 74.90%
3 185 5.32% 80.22%
4 115 3.31% 83.53%
5
6

PR o P

RN =] 5 e 1 B S

70 2.01% 85.54%
65 1.87% 87.41%

R 1 T T = T S

80% of the routines in the system are
called by three or fewer other routines

LEAGRE L KRS e

FET e TE R T S

PO T 1 . S Py

L Bd I S T I R

TENH L A e I

et L Lo e] &g Y= 1 I T) S) B N TP

Number of Distinct Reutines which Call the Routine

Number of Routines

Bz e Rl 3 orienes wabyd oo e Pl b e
4 ozl o= Tos O beer Booweat Lorpeses

Pz b pieess

N TR T SR

routines = 3478
e e range = 0 to 180
I s Bt d e s average = 6
URESEH LA o \
calls % total cum.% of
n te routines routines routines
e lL o DIZZSIOCT LLLAlLIo LI
SRR ‘x 0 374 10.75% 10.75%
1 316 9.09% 19.84%
I 2 305 8.77% 28.60%
3 335 9.63% 38.24%
4 287 8.25% 46 ,49%
b= P L S 5 268 T.71% 54,20%
6 236 6.79% 60.10%
60% of the routines in the system make calls
T to six or fewer other routines

LTI I —
Y
9L, Ea !
ﬂ

|

LAt G e oo b

1

o S
1 oFsE

£, B l IR . |

L R ’
Number of Distinct Routines which are Called by the Routine

1 FAEREAITY B
LA, B
w
Ju1]
=
]
4-’ "
=3 1R ,
o3
~ o
0
4
o n
b g
o5
"Q o
=
jm
=
i
1 . EaEh
i

v B e dbvd ol omeoees s L L eed Foea

[

O bz BFhooach d mees

Number of Routines = (Distinct Calling Routines)_2'08*2180

| ﬁ1
ISy \ f g]
| ’M WLI | HJ PAN i

| i

N g 1

vl - RS L b A 1y P Y s 1 7, B L gy b EUEI T
i L Loped X

Number of Distinct Routines which Call the Routine

{log scale)

Number of Distinct
Routines which
Call the Routine

Note: don't take
this too seriously,

the branch ratio by |

itself is not strong

Routine Branching Ratios

o seatterplot T~ yjies
\J system \\ AN ///functional
Y utilities NG <~ agents
| AN
_ N
\
subsys
utilities

enough to characterize Number of Distinct Routines which are

a routine.
Neighbors 8/21/87

Called by the Routine

Subsystems

* subsystems are found by applying a policy to each routine:
— branch ratio w/respect to rest of system
- branch ratio w/respect to subsystem under construction
- shared global data

* subsystems have a regular structure similar to systems
* subsystems contain 20-150 routines or 4,000 30,000 source lines

* subsystems are embedding and recursive

* subsystems are the key to reverse engineering and regaining
control of a large system

Neighbors 8/21/87

Neighbors 8/21/87

System and Subsystem Structure

A/

g

NNh
N ///\\\\q/ §§§§:\§§§
5 o
T T T N \date

/

|

/NN

7 / \W\
\

f\ \\ VA

NN

T

/A RVAVANNT

to enclosing utilities

interface
routines

functional
decomposition

functional
agents

utility
routines

[] = routine, 20150 in a subsystem

average about 35

Neighbots 8/21/87

*

Conclusions

ganularity of large systems are subsystems
of 20-150 routines or 4,000~ 30,000 source lines

size of subsystem is approximately the same number
of source lines assigned per programmer only the
mapping is usually not one programmer to one
subsystem

"discovery" of components in existing systems

- very little chance w/no refinement history
- Balzer's "information spreading"
- subsystems are domain artifacts which

have not spread or embedded

Draco Implications

* domain concept justified

* a subsystem resulting from a Draco refinement of a problem
should imply the use of a particular modeling domain. but

the converse Is not true

* partially refined subsystems should be the
library unit managed by Draco — no more complete refinements

* varying architectural design a good idea

* bottom end of the domain hierarchy is not as
important as | once thought — modeling domains

are much more important

Neighbors 8{21/87

Organizational Context of Draco

S =
5 :
: tsgcf: areo — odeling
Literature develo rggnts Modeling omaing
=N Domain Ny
ERN N Analyst ’ffi\
— interconnected
eneral ,
gﬁ-\&,\ eeds Domain struciure
K() ‘ application Designer AN
Aonlicat domains /ﬂ\\\
Ication i
= PPIIC: Machine |
oy Dr?ar?yas!tn / S

Users of / / Draco
Similar Systems ?;‘set%‘i'ﬁab'e Caine / /

/ domain language

M-f"“’f sy stem description
N (and refinement info
-
m m;i/ needs_ for a tunctional (
specific system requirements————

User with a ystems ystems
ﬁpe%lflc System Analyst Demgner
ee

Neighbors 8/21/87

Future

* more work on subsystem extraction and restructuring
* "scan it yourself' kit — a nice application domain

* Draco rebuild in Ada targeting Ada |
system architecture in Biggerstaft's reusability book

Neighbors $/21/87

ENTER ROUTINE (IN SINGLE GUOTES), %DOWN, %UP

i TNL Doy
snssm_lll_..snssﬁb

T Eod
wraces] —foroan, |

/s,]

.H Al H.
—Fwrotag

.mﬂn5403 mlﬂ e _

.,.ﬁ WD I whw iy

ENTER ROUTINE C(IN SINGLE QUOTES), %DOWN, %UP

AR, BT

AL e R

1 A6 B3

j A NTE PRETE |

15N L e

Number of Routines

SHAR . 0 b

LR AT B S

Xty %

Lfavd s v -

ERTo TS I 2 T, I B

LS U T & T B P

LEFITEE Ty

RN oy e

s

6

}%mLmh_J_,MLL_._“”“

Pl ¥ @ e bdrad el i e s b3 ored kg

B byes

called 7™~ 77 = % total cum:% of
by routines routines

— i ——— —— e — e ——————

0

1 62.16% 62.19%
2 12.71% 74.90%
3 5.32% 80.22%
4 ' 3.31% 83.53%
5 2.01% 85.54%
6 1.87% 87.41%

80% of the routines in the system are
called by three or fewer other routines

A U A N FOUOR N N R

T

Number of Distinct Routines which Call the Routine

Lew LAY L sbia Lot LTy WA TEL e Lrahkd T SIYTE)

0.02% 0.02% (MAIN routine)

. .‘:_-.j;;.;.,« >

IR

LETET R I N TR

l j: Irmagjt.lrﬂtuxﬂl

e TE I T B

EL L TS S I TP
17 I LIT N B
StAara e | -
et A = 1o B ERREE]

w

Lo

=4

-

+3

fa

o]

[+ 4

L]

o

H) T P T

7]

A

=

=

=

LR RIS I Y]

L L]

[N

II
Y
"\.._
|
II
'l‘]fl
o
e B B R T PR R

Number of

e n
% * vl o

R PR T T R

=F _aiu T3 s

Va3 Egemp Faomat drieas
/ |
Galll} !% total cum.% of
to | routines routines
o ©10.75% 10.75%
i 9.,09% 19.84%
2 ! : 8.77% 28.60%
3 s ? 9.63% 38.24%
4 . 8.25% 46.49%
5 ' e 7.71% 54.20%
6 1 6.79% 60.10%

60% of the routines in the system make calls

- " T I
U1 VIR ST i BTN S

to s8ix or fewer other routines

LI N A

Distinct Routines which are Called by the Routine

ot v blbvE by sores Doa b Leecd B
H O beer Booat Lme s

-2.08

Number of Routines = (Distinct Calling Routines) *2180

1R, By pe-e—

“'\Il
@0 _ HK
W .
= \,
s v
g’“ \\\

o 1 RAES . KNy e
o
m r; o \‘\._____

3] e \
P .
3 g'l
5° />
=
o
o

s
l \ / l,

L

g b Leaed L0
Number of Distinct Routines which Call the Routine
(1og scale)

