
1MODULE INTERCONNECTION LANGUAGES

Dr. James M. Neighbors
November 1987

M o d u l e I n t e r c o n n e c t i o n L a n g u a g e s (M I L s) a r e b a s e d o n t h e d i f f e r e n c e b e t w e e n_ _ __ _
P r o g r a m m i n g - i n - t h e - l a r g e (P L) a n d P r o g r a m m i n g - i n - t h e - s m a l l (P S) . T h e p r i m a r y
difference between PL and PS is that “structuring a large collection of modules to form a
s y s t e m (P L) i s a n e s s e n t i a l l y d i f f e r e n t i n t e l l e c t u a l a c t i v i t y f r o m t h a t o f c o n s t r u c t i n g t h e
individual modules (PS)”[DERE76]. Architects of a large system are primarily concerned with
the process of “knitting” system modules together rather than with the process of programming
each module.

P S i s c o n c e r n e d w i t h b u i l d i n g p r o g r a m s , w i t h t h e p a r t i c u l a r u s e o f l o o p - c o n s t r u c t s , i f -
statements, assignment-statements, expressions, arrays, and so on. Over 35 years PS has
b e e n g r e a t l y d e v e l o p e d t o i n c l u d e t h e t e c h n i q u e s o f s t r u c t u r e d p r o g r a m m i n g , t y p e d -
structure definition, top-down design, stepwise refinement, and others. The system lifecycle
phases of detailed design and implementation primarily use PS notations. These notations
focus on how a particular part (module) of a system performs its function.

P L i s c o n c e r n e d w i t h b u i l d i n g s y s t e m s . A s y s t e m i s a r e l a t i v e l y i n d e p e n d e n t g r o u p o f
p r o g r a m s (m o d u l e s) w h i c h c o o p e r a t e t o i m p l e m e n t a c o m p l i c a t e d f u n c t i o n f o r t h e
organization in which it is embedded. PL notations are primarily used in the architectural design
phase of system construction and concentrate on how the system modules cooperate (through
calls and data sharing) and what functions each module provides. A language concerned
with the data and control flow interconnections between a collection of modules we will
refer to as a Language for Programming in the Large (LPL). A MIL is an LPL with a_ _ __ _ _
f o r m a l m a c h i n e - p r o c e s s a b l e s y n t a x (i . e . , n o t n a t u r a l l a n g u a g e o r g r a p h i c a l d i a g r a m) w h i c h
provides a means for the designer of a large system to represent the overall system structure in
a concise, precise, and verifiable form.

A MIL can be considered a design language because it states how the modules of a specific
s y s t e m fi t t o g e t h e r t o i m p l e m e n t t h e s y s t e m ’ s f u n c t i o n . T h i s i s a r c h i t e c t u r a l d e s i g n
i n f o r m a t i o n . M I L s a r e n o t c o n c e r n e d w i t h w h a t t h e s y s t e m d o e s (s p e c i fi c a t i o n
information), what the major parts of the system are and how they are embedded into the
o r g a n i z a t i o n (a n a l y s i s i n f o r m a t i o n) , o r h o w t h e i n d i v i d u a l m o d u l e s i m p l e m e n t t h e i r
function (PS or detailed design information).

While the major payoff of using a MIL may appear to be during the system design phase of the
s o f t w a r e l i f e c y c l e , t h e a c t u a l p a y o f f o c c u r s d u r i n g s y s t e m i n t e g r a t i o n , e v o l u t i o n a n d
m a i n t e n a n c e . T h i s i s b e c a u s e t h e M I L specification o f a s y s t e m c o n s t i t u t e s a w r i t t e n d o w n
description of the system design which must be adhered to before a version of the system may be
constructed. A maintenance programmer cannot knowingly or unknowingly violate the system
design without explicitly modifying the system design.

1. c o p y r i g h t (c) 1 9 8 7 , 2 0 0 1 B a y f r o n t T c h n o l o g i e s , I n c . A r t i c l e w r i t t e n f o r M e r i d i a n S o f t w a r e S y s t e m s , I n c . ,e
newsletter. Meridian was an early provider of ADA compilers for the IBM PC.

1 The MIL Description of Systems

Using a MIL the specification of a complete system must include three items:

1. A PS (programming language) description of each of the modules in the system.

2. A PL (MIL resource language) description stating the resources provided and required
by each module in the system.

3. A P L (M I L i n t e r c o n n e c t i o n l a n g u a g e) d e s c r i p t i o n o f t h e r e s o u r ce flow betwee n t h e
constituent modules of the system.

I n a M I L d e s c r i p t i o n , r e s o u r c e s a r e a n y e n t i t y t h a t c a n b e n a m e d i n a P S p r o g r a m m i n g
language (e.g. v a r i a b l e s , c o n s t a n t s , p r o c e d ures, type definitions, etc.) and which can
actually be made available for reference by another module within a given software system.

A l l r e s o u r c e s a r e u l t i m a t e l y p r o v i d e d b y m o d u l e s , t h u s m o d u l e s a r e u n i t s t h a t p r o v i d e
r e s o u r c e s a n d t h a t r e q u i r e s o m e s e t o f r e s o u r c e s . T h e p r i m i t i v e o p e r a t i o n s o f a M I L
describe the flow of resources among modules; they are provide (which may also be
called synthesize or export) and require (which may also be called inherit or import). Has-

 access-to is primitive operation which checks to see if the named resource is visible at the given
point of compilation. A must attribute may also precede the above operators.

The MIL description of a module specifies the resources required and provided by the module.
This module description becomes the interface with other modules and subsystems and is
made up of resource names and the operations which act upon them. Module descriptions are
the actual code of a MIL and are used when assembling or integrating a software system in
order to verify system resource flow.

In most module interconnection schemes the PL information is in the form of a MIL and the PS
i n f o r m a t i o n i s i n t h e f o r m o f a n o r m a l p r o g r a m m i n g l a n g u a g e . T h e p a c k a g i n g o f t h i s
information differs between two extremes. At one side of the spectrum a system may be
defined as a collection of modules each of which contains MIL and PS information and there
is no central description of the system other than the list of modules which compose it. At the
o t h e r e n d o f t h e s p e c t r u m t h e m o d u l e s w h i c h c o m p o s e t h e s y s t e m c o n t a i n o n l y P S
information while a central description of the system contains all the MIL information
for each module and the interconnections in the system. In both cases it makes sense to

 “compile” the MIL definition of a system to see if the interfaces between it’s constituent
parts match. No programming language (PS level) information is necessary to perform this
compilation.

An example of a MIL description of a module is shown below. Declarations such as module,
function, and consist-of are part of the MIL syntax. Note that the MIL description code for XA
and YBC could be written separate from the description of ABC.

module ABC
provides a,b,c
requires x,y
consist-of function XA, module YBC

function XA
must-provide a

– 2 –

requires x
has-access-to module Z
real x, integer a

end XA

module YBC
must-provide b,c
requires a,y
real y, integer a,b,c

end YBC
end ABC

2 What MILs Do and Don’t Do

Module Interconnection Languages provide the following abilities:

1. D e s c r i b e s y s t e m s t r u c t u r e b y d e fi n i n g s c o p e o f n a m e s a c r o s s m o d u l e s a n d_________________________
subsystem boundaries and specifying the interconnection between modules.

 This is accomplished when writing the description part of each module and compiling
a l l t h e d e s c r i p t i o n s t o g e t h e r . T h i s p r o v i d e s a m e a n s t o r e p r e s e n t t h e a r c h i t e c t u r a l
design of a software system in a separate machine checkable language. Design and
construction information is successfully integrated at the programming-in-the-large
level.

2. Establish static intra-module connections and do static type checking across module____________________________________
b o u n d a r i e s . S t a t i c h e r e r e f e r s t o c o m p i l e t i m e w h i l e d y n a m i c w o u l d m e a n a t
execution time. This function is a consequence of the first.

3. Provide for different kinds of accessibility to module resources (e.g. read only, read_____________________________________
a n d w r i te, etc..) and allow modules and/or subsystems t o b e w r i t t e n i n d i f f e r e n t
programming language or to consist of text only.

4. P r o v i d e m a i n t e n a n c e m a n a g e m e n t . A s y s t e m c a n b e r e v i s e d , m o d i fi e d a n d t y p e_______________________________
checked at the MIL level before attempting any changes to the code. MILs can prohibit
p r o g r a m m e r s f r o m c h a n g i n g t h e s y s t e m a r c h i t e c t u r a l d e s i g n d u r i n g e v o l u t i o n a n d
maintenance without an explicit change in the architectural design as represented
by the MIL.

5. Manage version control and system family. This is an advanced but necessary__
function in developing large systems. A generalization of the construction process can
be represented by a MIL and organized around a unified data base.

A s i d e f r o m t h e b a s i c o p e r a t i o n s l i s t e d a b o v e , a M I L u s u a l l y s e r v e s a s a p r o j e c t______
management tool by encouraging structuring before starting to program the details and as_______________
a support tool for the design process by capturing overall program structure and being capable of____________________________
verifying system integrity before design implementation begins. A MIL also provides a means
of standardizing communication among members of a programming team and of standardizing_______________________ ___________ _
documentation of system structure.____________

On the other hand, some of the main limitations of MILs can also be listed.

– 3 –

1. The contribution of MILs to the design stage is mainly in checking design completeness
not in performing the design. The design must be carried out by means of the present
methodologies or techniques.

2. A M I L b e c o m e s a n e f f e c t i v e t o o l o n l y i n v e r y l a r g e s y s t e m s . T h e a m o u n t o f e f f o r t
required to use a MIL along with the development of a system is very large and it pays
off only if maintenance is extensive.

3. M I L s d o n o t p r o v i d e a n y m e a n s f o r t h e u s e r t o d e t e r m i n e w h i c h o f t h e a l r e a d y
c o n s t r u c t e d m o d u l e s c a n b e u s e d w h e n d e s i g n i n g a n e w s y s t e m . T h i s p r o b l e m o f
course was not intended to be solved by MILs, but seems to be a very attractive
f e a t u r e t o h a v e c o n s i d e r i n g t h e i n f o r m a t i o n c o n t a i n e d i n a M I L d e s c r i p t i o n o f a
system.

3 Ada and MILs

Obviously, Ada provides support for MIL concepts. If we view Ada packages as the module
u n i t s , t h e n t h e p a c k a g e s p e c i fi c a t i o n i s t h e P L (M I L r e s o u r c e l a n g u a g e) i n f o r m a t i o n a n d t h e
p a c k a g e b o d y provides the PS (programming la n g u a g e) i n f o r m a t i o n . T h e l a n g u a g e p r o v i d e s
for these two definitions to be packaged either separately or combined.

Ada provides weaker support for the third part of a MIL system specification, namely PL
(MIL interconection language) information. The primary agents of module interconnection in
A d a a r e t h e w i t h c l a u s e , l i b r a r y u n i t m a n a g e m e n t , a n d u n i t e l a b o r a t i o n c o n t r o l .
Investigation with MILs has shown that it is important for parent modules in a system to

 have the ability to control the resources requested and passed among its offspring. In Ada this
would mean that a package A which is the parent by with context clauses of packages B, C, and
D c o u l d c o n t r o l t h e c o n t e x t c l a u s e s o f p a c k a g e s B , C , a n d D u s e d i n c o n s t r u c t i n g t h o s e
packages. This control is very fine, perhaps limiting B to only using some of the resources
provided by C while allowing D access to a different subset of the resources provided by C.
In addition, package A could decide which of the resources it has access to from packages B, C,
and D are made available to packages which use it. Obviously elaboration becomes much
more difficult.

W might solve this problem by generating different partially compatible generic or renamese
versions of C for use in the construction of A, B and D; but this seems like an extreme

 solution. Further, the hierarchy of modules making up a large system are usually a graph rather
than a tree and that would make these solutions practically impossible.

T w o l i m i t a t i o n s o f t h e A d a e l a b o r a t i o n e n v i r o n m e n t m a k e u s i n g M I L s y s t e m d e s c r i p t i o n s
difficult, 1) with clauses provide an “all or nothing” importation of visible objects from
the specified package; and 2) the Ada unit library does not enforce any hierarchy among the
packages or combination of packages. The hierarchy is required to describe the limitations in

 resource flow. It is important to note that these problems are not problems with the existing
A d a l a n g u a g e . A d a ’ s s u p p o r t f o r P S (p r o g r a m m i n g l a n g u a g e) a n d P L (M I L r e s o u r c e
language) are very strong. Only the visibility of a package during elaboration is changed by
P L (M I L i n t e r c o n n e c t i o n l a n g u a g e) d e fi n i t i o n s a n d t h e s e c o u l d b e m a n a g e d a s p a r t o f t h e
support environment (APSE). A MIL specifically designed for Ada is discussed by
Tichy[TICH80].

– 4 –

4 Further Information

MILs are very effective tools for aiding the architectural design of large systems which will be
heavily maintained. A system must be evaluated, analyzed, and designed first by means of
current methods and techniques. Once a system design is determined, it may be coded in a MIL
to be checked and verified for completeness and inconsistencies. The significant support of
architectural design as seen from the Software Engineering perspective, is what makes MILs an
important tool for the software development process.

Further information about module interconnection languages may be found in the following:
[PRIE86] Module Interconnection Languages,

Ruben Prieto-Diaz and James Neighbors,
Journal of Systems and Software, 6, 307-334, 1986.

[DERE76] Programming-in-the-Large versus Programming-in-the-Small,
F. DeRemer and H. Kron, IEEE Transactions on Software
Engineering, 321-327, June 1976.

[TICH80] Software Development Control Based on Systems Structure
Description, W.F. Tichy, Ph.D. Dissertation, Carnegie-Mellon
University, Computer Science Department, January 1980.

– 5 –

