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Step 1. Where are we going with thistutorial ?

You are going to make a compiler right here on these web pages. Yes - no kidding. In fact you are going to make a
lot of compilers - and it's all going to be easy. No Ajax, Active X, DLLs, SOs, ASP, CGI, Java, plugins, modules,
XML, cookies, PHP, Perl, Python, magic shell operations, world wide standard du jour, or intergalactic domination
plans are necessary - just plain JavaScript in frames. Also you will be able to move the compiler you build off these
web pages and into your programming language of choice by cutting and pasting. After all a compiler is just a
program that reads text and writes text or binary. Most general purpose programming languages are capable of doing
that.

Step 1.1 Background and History

Programming languages above the level of individual machine assembly languages were introduced in the 1950s.
The idea was to be able to write programs independent of any particular machine. It seems an obvious notion now,
but was a big innovation then.

Following IBM's FORTRAN in 1954 the first widely discussed academic language was ALGOL 60 from 1960. This
set off a flurry of interest in how a compiler for ALGOL 60 could be made and then easily ported to all the wildly
different machine assembly languages of the time. One proposed method was META 1I that was published by D.V.
Schorre in the 1964 ACM National Conference. Below are the reference, link, and abstract of the 1964 META 11

paper [Schorre64].

META I1: A Syntax-Oriented Compiler Writing Language.
Schorre, D. V.

In Proceedings of the 1964 19th ACM National Conference,
ACM Press, New York, NY, 41.301-41.3011, 1964.

available as http://doi.acm.org/10.1145/800257.808896

Abstract:

Meta II is a compiler writing language which consists of syntax equations resembling Backus normal
form and into which instructions to output assembly language commands are inserted. Compilers have
been written in this language for VALGOL I and VALGOL II. The former is a simple algebraic
language designed for the purpose of illustrating META I1. The latter contains a fairly large subset of
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ALGOL 60.

The method of writing compilers which is given in detail in the paper may be explained briefly as
follows. Each syntax equation is translated into a recursive subroutine which tests the input string for a
particular phrase structure, and deletes it if found. Backup is avoided by the extensive use of factoring
in the syntax equations. For each source language, an interpreter is written and programs are compiled
into that interpretive language.

META 1I is not intended as a standard language which everyone will use to write compilers. Rather, it
is an example of a simple working language which can give one a good start in designing a
compiler-writing compiler suited to his own needs. Indeed, the META II compiler is written in its own
language, thus lending itself to modification.

Step 1.2 What's so special about META 117?

Why should anyone spend time learning something from 1964? Can it possibly be of any use over 40 years later?
The very short answer is - yes. The above abstract talks about compiling ALGOL 60 - not exactly today's problem.
Instead how would you like to be able to dynamically generate a custom XML parser from a dynamic XML
document definition and run it in JavaScript on an XML instance on the client side before POSTING the content to
the server? This is the same problem - dynamic generation of a compiler as an interpreter from a metadefinitional
form. META II can help with this problem. Its clear ideas are as fresh and useful today as they were in 1964.

You won't really find metacompilers like META 1II in compiler textbooks as they are primarily concerned with
slaying the dragons of the 1960s using 1970s formal theory. The only problem with this formal theory work is that it
is not simple. You might look in a compiler text for a simple parsing and end up wading through a proof about the
correctness of LALR tables. META 1I is simple and elegant - and sometimes that works. I've used it many times
over the years and it's an important tool in my bag of tricks. I've given META II versions to friends and we've made
important commercial products with it. [ used its concepts in my 1980 Ph.D. dissertation as part of the theory of
domain analysis. I used its metadefinitional concepts in my 2002 paper "Techniques for Generating Communicating

Systems"

I'm not alone as an admirer of META II. In 1990 when Donald Knuth was asked what helped to crystallize his
thinking about attribute grammars he related the following [Knuth90].

"Many details of those two days (February 4-5, 1967) still remain fresh in my mind. ... Peter [ Wegner]
asked me what I thought about formal semantics, and I said I liked Iron's idea of synthesizing an overall
meaning from submeanings. I also said that I liked the way other people had combined Irons's approach
with a top-down or "recursive-descent" parser; Irons had used a more complex parsing scheme. In
particular, I was impressed by the metacompiler of Val Schorre [Schorre64] and by the more powerful
(though less elegant) "transmogrifier" of Bob McClure [McClure65]."

Later in this same article Knuth goes on to discuss how the use of recursive-descent parsers prompted him to
examine class of LL(k) parsers. After a decade of formal analysis what the 1964 META II does is generate
top-down recursive-descent parsers with Wirth-Weber code gjection. I have the feeling this description would bring
a smile to the faces of the crew around the UCLA Computing Facility where Val Schorre worked in 1964. One
reason to smile is that it recognizes their important contribution to theory. Another reason to smile is that
long-winded definition is too complex and obtuse. Ironically as a definition it is essentially obsolete because it
doesn't really capture the idea of what a metacompiler is or how it was achieved in META II. METAI can
reproduce its own code from a description. After working with these systems for over 35 years I still find that
amazing! I hope you will find it amazing too.

Step 1.3 The M etacompiler Workshop

The Metacompiler Workshop is a webpage that can build compilers. It uses only JavaScript in frames. If you wish to
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check the validity of this statement for yourself, please skip to Step 16 where we provide links to the Metacompiler
Workshop webpage sources. When you open the Metacompiler Workshop some browsers may need an OK to run
JavaScript. Please open the Metacompiler Workshop webpage under a new browser tab or window. It has been
tested with Microsoft Internet Explorer 7 and Mozilla Firefox 2. Its HTML source has been validated by W3C
Validator as "Valid HTML 4.01 Transitional" in a "Valid HTML 4.01 Frameset" (see Step 16 for details).
Alternatively you may download mc_tutorial.zip containing all the files needed to use this tutorial and the
Metacompiler Workshop offline. Just unzip the all the files into a directory. Most of the steps of this tutorial will
involve working with the workshop.

The workshop consists of three text boxes:

1. Input provides the text input to the compiler. There is a drop down selection for the texts used in the META
II paper and the many extensions on these pages. Feel free to edit the Input window text by keystroke or
cut-and-paste.

2. Code provides the pseudo assembly language presented in the META II paper and later JavaScript extensions.
We will discuss the meaning of this language later. There is a drop down selection for the codes used in the
META 1II paper and on these pages. You may also edit the Code window text.

3. Output is the output of the last compile. There are two output-related buttons: "Copy to Code" and "Clear".
"Copy to Code" is used if the output is a new compiler you wish to test. As with all the other windows you
may edit the text of the Output window.

At the bottom of the window are three buttons "Compile", "Compare Code and Output", and "Extract Syntax to
Output". The "Compile" button runs the code in the Code window on the Input window contents and places any
output in the Output window. The "Compare Code and Output" button compares the text in the Code and Output
windows and displays the first difference. The "Extract Syntax to Output" button will be discussed later in Step 2.
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Step 2. Compiling arithmetic statements
In this step we present a small demonstration compiler. The goal of this step is to get you comfortable with the

operation of the workshop. The demonstration compiler is AEXP which just compiles arithmetic assignment
statements. In Step 3 we will show you how to build AEXP.
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Step 2.1 Enough talking let's seeit do something!

1. Select Input i01. demo, AEXP example assignments
2. Select Code c01. demo, AEXP assignments compiler c[i02,c02]
3. Click the "Compile" button in the lower left corner

http://www.bayfronttechnologies.com/mc_tutorial.html]

Depending on your browser you may see the output appear one line at a time. If the compile finishes without error,
you will see a confirm dialog box that says "Done.". If the compile encounters an error, you will see an alert dialog
box with error information before the final "Done." confirm dialog box. If all goes well the table below shows the

compiling transformation from the Input to the Output.

Input

fern: =5+6;
ace: =fern*5;
wal do: =f er n+al pha/ - bet a*gamm;

Output
address fern
literal 5
literal 6
add

store

addr ess ace
| oad fern
literal 5
nmy

store

addr ess wal do
| oad fern

| oad al pha
| oad beta
m nus

| oad gamma
exp

div

add

store

The output language is a made-up example language that computes arithmetic expressions using a stack. Examine
the output from this little arithmetic expression compiler carefully. It knows an awful lot about its operators. As an
example it knows that division is higher precedence than addition (i.e., A+B/ Cis A+( B/ C) rather than (A+B)/ C)). It
knows that exponentiation is right associative (i.e., A*B*Cis A*( B*C) rather than (A*B)~C) and that addition is left
associative (i.e., A+B+C s calculated ( A+B) +C rather than A+(B+C) ). It knows that the unary operator minus is higher
precedence than exponentiation (i.e., - AAB*C s ( - A) ~( B*C) ). Pretty sophisticated stuff precedence with left-right
associative parsing to code generation. You can prove these statements to yourself by cutting these expressions out
of these sentences and pasting them into the Input window and clicking "Compile" again. (e.g., f ern: =A+B/ C; )

Step 2.2 Checking the output

Repeating some of the above steps demonstrates the function of the "Compare Code and Output" button.

Select Input "Input Clear"
Select Input "i01. demo, AEXP example assignments"

Click the "Compile" button in the lower left corner
Select Code "c00. demo, compiled assignments c[i01,c01]"

SNk L=

Select Code "c01. demo, AEXP assignments compiler c[i02,c02]"

Click the "Compare Code and Output" button in the lower left corner

The comparison should indicate that the Input and Output window contain the same text. You can see what the
comparison does when they are not the same by editing either one of them.

Notice that the notation c[i 01, c01] on the second code selection above means that the code resulted from
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compiling Input i 01 with Code c01.
Step 2.3 Really - makesurewearen't lying

Repeating some of the above steps demonstrates what happens when a compile fails.

1. Select Input "Input Clear"

2. Select Input "i01. demo, AEXP example assignments"

3. Select Code "cO1. demo, AEXP assignments compiler c[i02,c02]"
4. Click the "Compile" button in the lower left corner

Now just start changing things.

1. Change the name of one of the Input variables and click Compile to prove that we are actually compiling the
contents of the Input window.

2. Change the name of one of the Code constants (e.g., ' store' into ' save' or something) in the Code window
and click Compile. (Yes you can edit the Code window and it is the code we run when Compile is clicked. If
you create an infinite loop you will have to close and restart the browser.)

3. Try editing the Input and clicking "Compile" until you receive the error notification alert box. The last line in
the alert box tells you where the compiler was scanning when it encountered the error by inserting a <scan>
marker into the erroneous input line.

Step 3. Example AEXP compiler

All compilers must deal with two languages: the input language it compiles from ( Syntax) and the output language it
compiles to (code).

1. Select Input "i02. demo, AEXP example assignment compiler"
2. Click the "Extract Syntax to Output" button in the lower left corner

This should result in the following windows.
Input ‘ Output (" Extract Syntax to Output")

. SYNTAX AEXP
. SYNTAX AEXP
AEXP = AS $AS ;
AEXP = AS $AS .,

AS = .ID .QUT('address ' *) ':=" EX1 .QUT('store') ';' ., |AS=.1D":= EX1°'
EX1 = EX2 $('+ EX2 .QUT('add') /
- BEX2 . OUT('sub') ) ., EX1 = EX2 $( '+ EX2/ '-' EX2) ;
EX2 = EX3 $('*' EX3 .QUT(' mpy') /
YIYOBEX3 .oUT('div') ) ., EX2 = EX3 $( '*" EX3/ 'I'" EX3) ;
EX3 = EX4 $('™ EX3 .QUT('exp')) .,
EX4 ="'+ EX5/ '-' EX5 .QUT('mnus') / EX5 ., EX3 = EX4 $( '~ EX3) ;
EX5 = .ID .OQUT('load ' *) [/
.NUMBER . QUT('literal ' *) [/ EX4 ="'+ EX5/ '-'" EX5/ EX5 ;
" BEX1 )"
EX5 = .ID/ .NUMBER / '(' EX1 ')’
. END
. END

A META II Compiler of Arithmetic Statements to Stack Code

The Input above is a META II compiler description of the arithmetic statement compiler. All of that sophisticated
precedence and associative parsing is contained in this 15 line description. This same description would have
compiled and run in 1964 by the original META 1II (except perhaps for the lower case). The Output resulting from
the "Extract Syntax to Output" button operating on the Input separates the Syntax or input language the compiler
compiles from the output code language such as "add" in this case.

9/5/2008 7:54 PM
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Step 3.1 Under standing syntax

In the above table the syntax or input language description has been separated from the complete compiler
description into the Output window. The discussion of this section considers just that Output window. As Schorre
states in his abstract these are "syntax equations resembling Backus normal form". The syntax description starts
with a . SYNTAX statement that provides the initial rule (AEXP in this case) that is followed by a series of named
syntax rules and ends with a . END statement. Each syntax rule starts with a name followed by a "=" followed by a
series of recognition constructs and ends with a ".," or ";". Since this is Syntax-directed compiling the constructs are
concerned with successfully recognizing input or not. Recognizing a bit of input is thought of as being either
successful or unsuccessful. As parts of the input are successfully recognized, they are skipped over in the input
string. Whitespace consisting of blanks, tabs, and line controls (e.g., carriage return and line feed) separates the

recognized syntax constructs in the input.

\ Construct \ Meaning \ Concept Name
‘. ID ‘recognize an identifier ‘token

‘- NUMBER ‘recognize a number ‘token

. STRING recognize any string in single quotes [token

string in single quotes |recognize the given string literal string
‘rule name ‘recognize the given syntax rule ‘invocati on

Al B recognize A or B alternation (OR)
A B recognize A and B sequence (AND)
‘. EMPTY ‘recognize nothing, always succeed ‘opti on (NOT)
‘$A ‘repeat A until not recognized ‘iteration

‘( A B) ‘ group recognition constructs ‘precedence

Meta II Syntax Constructs

Choices and control constructs are given by a (AL A2 ... An / Bl B2 ... Bn) syntax. If Al is successful, then
A2 through An if present must be successful or an error occurs. If Al succeeds, then the B alternatives are not
attempted. If A1 is not successful, then B1 is attempted. If B1 is successful, then B2 through Bn if present must be
successful or an error occurs. If both A1 and B1 are unsuccessful, then the entire grouped construct is unsuccessful.
Notice there are two grammar operators here: alternation (an OR choice) delimited by / and sequence (an AND
choice) delimited by blanks.

The construct . EMPTY doesn't try to recognize anything and always succeeds. It is useful in cases such as (A /

. EMPTY) where even if A fails, then the entire grouped construct succeeds. In essence this indicates the syntax A as
being optional. . EMPTY is built-in to recognize the absence (a NOT choice) of an optional syntax. The . EMPTY
construct is not used in the AEXP compiler presented above as there is no optional syntax.

Step 3.2 Under standing output code

In this section we will be concerned with the complete AEXP compiler description from the Input window shown
above. As Schorre states in his abstract this complete compiler description "consists of syntax equations resembling
Backus normal form and into which instructions to output assembly language commands are inserted". As can be
seen in the above Output window, the syntax is basically the complete compiler description with the . OUT and

. LABEL code generating constructs removed. In Metall syntax-directed compiling the code generation constructs are
embedded in the control of the syntax recognition constructs. This means for control reasons code constructs shown
in the following table must mimic a Syntax construct. As syntax constructs all code constructs don't try to recognize
anything and always succeed.

9/5/2008 7:54 PM
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‘ Construct ‘ M eaning ‘Concept Name
‘- auT() ‘output a text line ‘format control

‘- QUT(" string’) ‘output a literal string w/o quotes ‘Iiteral output

. QUT(*) output last recognized token token output

- QUT(*1) output generated number 1 generated label
‘- QuT(*2) ‘output generated number 2 ‘generated label
‘- LABEL ' string’ ‘output a literal string w/o quotes at left margin ‘Iiteral output

‘- LABEL * ‘output last recognized token at left margin ‘token output

‘- LABEL *1 ‘output generated number 1 at left margin ‘generated label
. LABEL *2 output generated number 2 at left margin generated label

Meta II Code Constructs

.QUT(*) and . LABEL * means output the last recognized token (i.e., input last recognized by a . | D, . NUVMBER, or
. STRI NG syntax construct).

The basic idea of the output of code is single text line at a time. All of the code constructs shown with . OUT above
may be combined into a single . OUT() . The . LABEL constructs cannot be combined. Each . oUT() and . LABEL
corresponds to one output line. Each . OUT() produces output on a new line indented to assembly op code position.
Each . LABEL produces output at the left margin the assembly language label position. These output conventions
correspond to assembly language formatted output where labels are against the left margin and operation codes are
indented. Meta II was built in 1964 to generate assembly language output. Later we will expand these output choices
to include the modern block structured languages while maintaining the ability to output assembly languages.

Step 3.3 Building the AEXP compiler

Let's build this compiler.

1. Select Input "i02. demo, AEXP example assignment compiler"
2. Select Code "c02. Meta II of fig. 5, c[103,c02]"
3. Click the "Compile" button in the lower left corner

The Output contains META II pseudo code for the assignment statement compiler. Congratulations - you just made
a compiler. OK, it's small - but we're only on step 3.

Let's test this newly created compiler.

Click the "Copy to Code" button at the top of the Output window
Select Input "i01. demo, AEXP example assignments"

Click the "Compile" button in the lower left corner

Select Code "c00. demo, compiled assignments c[i01,c01]"

Click the "Compare Code and Output" button in the lower left corner

M

This is testing the output of the compiler. Similarly you could have tested the code equivalence of the compiler as
below.

Select Input "i02. demo, AEXP example assignment compiler"
Select Code "c02. Meta II of fig. 5, c[i03,c02]"

Click the "Compile" button in the lower left corner

Select Code "c01. demo, AEXP assignments compiler c[i02,c02]"
Click the "Compare Code and Output" button in the lower left corner

Nh WD =
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In general it is impossible to tell if two different programs perform the same function. However two programs with
the exact same text do perform the same function. This is the program equivalence we are testing above.

Step 4. META || metacompiler
OK, I'm warning you right here - this step gets confusing.

META 1I is a metacompiler which means a bit more than it can compile itself. Many, say, Pascal compilers are
written in Pascal and can compile themselves - but they are not metacompilers. This is where we lose a lot of
compiler theory textbooks. A compiler generator supports a high-level domain-specific input language that
describes the compiler to be built that is independent of the implementation language of the compiler generator. For
META II you've already seen it - the description in step 2 of the arithmetic statement compiler is a statement in
META II's domain-specific language aimed at describing compilers. Not all compiler generators are metacompilers.
A metacompiler is a compiler generator that is capable of reproducing itself from a high-level description. We are
going to see this actually happen in this step. That should make this high-level discussion much more concrete.

Just as we can characterize the syntax of assignment statements, we can characterize the syntax of syntax
statements. I told you it was confusing. The statement of META IIs Input formatted exactly from figure 5 of
[Schorre64] is shown below. Don't worry about all the details right now. Only the basic syntax scheme, built-in
syntax recognizers and control constructs should look familiar here. It's the same as the assignment compiler - just a
bit bigger.

1. Select Input "i03. Meta II syntax (paper fig. 5)"
2. Click the "Extract Syntax to Output" button in the lower left corner

This should result in the following windows with perhaps different linebreaks.
I nput Output (" Extract Syntax to Output")

. SYNTAX PROGRAM

QUTL = '*1' .QUT("GNL') / '*2' .OUT(' G\2') |

"' oUT("Cl') / .STRING .OUT(' CL '*).,

QUTPUT = ('.OUT" ' ('$OUTL ')' / - SYNTAX PROGRAM
" LABEL' .OUT('LB') OUT1)

LouT( Uty ., our: = "*1' [/ '*2" | '"*" | _STRING ;

EX3 = .1D .OUT('CLL '*) / .STRING wTPUT:(:'(LlAJgEL:(aJﬁ(l”)Tl')'/

LOUT('TST '*) / '.ID .OQUT('ID) /

. . L . EX3 = .ID/ .STRING/ '.1D |
- STRING . QUT( SR) /(" BXL ")/ ' NUMBER / '.STRING /
EMPTY' . OUT(' SET') / By ey
'$' . LABEL *1 EX3 $ B3 - :
_OUT(' BT * *1) .OUT(' SET')., '

e EX2 = ( EX3 / OUTPUT
EX2 = (EX3 . OUT(' BF ' *1) / OUTPUT) 5(3( A OUTPUT)) _
$(EX3 . OUT(' BE') / OUTPUT) '

*

-LABEL *1 ., EXL = BEX2 $( '/' EX2 ) ;
EXL = EX2 $('/' .OUT(' BT ' *1) EX2 ) _ L C
e 3 ST=.1D'= EXL°'.,
ST - 1D LABEL * = BXt PROGRAM = ' . SYNTAX' . 1D $ST ' . END
CloUT('R)., NS
PROGRAM = ' . SYNTAX' 1D .OUT(' ADR ' *)

$ ST '.END .QUT('END ).,
. END

The META II Compiler Written in it's Own Language
(Input is figure 5 of [Schorre64])
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So lets see some of this metacompiling stuff actually happen. Let's go back to building compilers.

Select Input "i03. Meta II syntax (paper fig. 5)"

Select Code "c02. Meta II of fig. 5, m[i103,c02]"

Click the "Compile" button in the lower left corner. This may take a while, so wait for the "Done.".
Click the "Compare Code and Output" button in the lower left corner

bl S

So what just happened? Meta II's code reproduced itself from the high-level domain-specific input description of
itself in the input window. It can do it over and over again by following the following steps.

1. Click the Output "Copy to Code" button and Output "Clear" button
2. Click the "Compile" button in the lower left corner. This may take a while, so wait for the "Done.".
3. Click the "Compare Code and Output" button in the lower left corner

Please take a moment to realize how amazing this is. The 29 line complex domain-specific input is compiled into
210 lines of pseudo assembly language output by the same 210 lines of low-level looking pseudo assembly
language. We will learn why this is something other than just a slick trick when we begin to change the compiler in
the following sections. It's much easier to modify a concise high-level domain-specific description than modify an
implementation full of implementation details unrelated to the problem domain (i.e., compiling in this case).

The "c02. Meta II of fig. 5, m[103,c02]" Code select above is denoted by m[i03,c02] rather than the more general
compiler notation ¢[103,c02] to indicate that this combination generates a metacompiler a special subset of
compilers.

Also notice META 11 description uses code pseudo assembly operators such as ADR, TST, BF, CL found in the
code generating . OUT statements. We will discuss in detail what these operators do in the next step.

Step 5. META 11 in detail

Because the syntax rules of the META II description are independent we may reformat them any way we wish.
Below are the rules of figure 5 of the META II paper shown above reorganized with some formatting to make them
a bit more easy to read. This form is top-down where syntax rule definitions are used before defined rather than
bottom-up where syntax rules are defined before use. In this form it's easier to see how this description compiles
itself.

Step 5.1 META |l compiling itself

The first line of the description . SYNTAX PROGRAMSspecifies PROGRAMas the first rule of a META 1I description. The
first thing the PROGRAMrule does is look for the literal string ' . SYNTAX' (without the quotes) followed by a . I D, an
identifier. In the case of the input below the PROGRAMrule finds the PROGRAMidentifier after the . SYNTAX. So for this
input description the first line output by the PROGRAMrule from it's code generation construct . OUT(' ADR ' *)
should be ADR PROGRAM Knowing that . LABEL * outputs the most recently recognized identifier, number, or string
against the left margin, can you guess what the second and third lines of output are? By the way - this is very hard.

1. Select Input "i04. Meta II syntax (i03 reordered)"
2. Click the "Extract Syntax to Output" button in the lower left corner

This should result in the following windows - again with perhaps different linebreaks.
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I nput Output (" Extract Syntax to Output™)

. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX' .ID .QUT(' ADR ' *)
$ ST
'".END .QUT('END) .,

ST =.ID.LABEL * '= EX1'.," .OUT('R) .. | oynrax PROGRAM
EX1 = EX2 $(' /' .QUT(' BT ' *1) EX2 ) . . . .
e 1 PROGRAM = ' . SYNTAX 1D $ST '.END
EX2 = (EX3 .QUT(' BF ' *1) / OUTPUT) ST =.1D"= BX1".." ;
$(EX3 . OUT(' BE') / QUTPUT) _ .
e EXL = EX2 $( '/’ EX2 )
. . EX2 = ( EX3 / OUTPUT
EX3 = .1D OUT(' CLL ' *) §$( A OUTPUT)) _
'STRING . OUT(' TST ' *) '
1D QuT(1D) EX3 = .ID/ .STRING/ '.1D

" NUMBER . OUT(' NUM )

" STRING .OUT('SR)

“(rEXL ')

" EMPTY' . OUT(' SET')

"$' . LABEL *1 EX3 .OUT(' BT ' *1)
.OUT(' SET') .,

/
* _NUMBER / '.STRING /
(" BEXL ') | 'L EMPTY |/
'$ EX3 ;

~ — o — — ~— —

OQUTPUT = ( '.OUT" '(' $OUTL ')' /
" LABEL' QUT1 ) :
OQUTPUT = ('.OUT" ' ('$OUTL ')' /
' LABEL' .OUT('LB') OUT1)
LouT(' ouT') .,

oury = "*1" [ "*2" [ '"*" | _STRING ;

. END
oUTl = '*1' LOUT("GNL' )/

teQ LOUT( G2 )/

our('a') I

_STRING . OUT(' CL ' *) .,

. END

The META II Compiler Written in it's Own Language
(Input is Top-Down version of figure 5 of [Schorre64])

Let's compile the above description using the original META 1II and find out if you figured out the second and third
lines of output.

1. Select the Input "i04. Meta II syntax (i03 reordered)"

2. Select Code "c02. Meta II of fig. 5, m[i03,c02]"

3. Click the "Compile" button in the lower left corner and wait for the "Done.".

4. Check your guesses for the second and third output lines using the Output window

The second line of output is PROGRAMas a label against the left margin. It is output by the rule ST when the . I D
construct recognizes the identifier PROGRAMat the beginning of the input line PROGRAM = ' . SYNTAX' .1D

.OUT(' ADR ' *) and the rule ST code construct . LABEL * caused the recognized identifier to be output against the
left margin.

The third line of output is TST ' . SYNTAX' not against the left margin. It is output by the rule EX3 as follows. After
the rule ST recognizes the . | D identifier PROGRAM(as above) and removed it from the input leaving = ' . SYNTAX'

.1D .OUT(' ADR ' *) remaining on the input line. The rule ST then recognizes the literal string ' =' and removes it
from the input leaving ' . SYNTAX' . 1D . OUT(' ADR ' *) as the input line. Next the rule ST invokes the rule EX1
which invokes the rule EX2 which invokes the rule EX3 which first tests the input line for . I D, an identifier. When no
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identifier is found the rule EX3 then tests for . STRI NG, a string in quotes. The rule EX3 does find the string

' . SYNTAX' at the beginning of the input line. It removes it from the input leaving . 1 D . QUT(' ADR ' *) as the input
line. The rule EX3 recognition of the . STRI NG causes the output of the line TST ' . SYNTAX' . The Output of Meta II
compiling the . SYNTAX header and PROGRAMthe first syntax rule is shown below.

I nput Output (" Compile")

ADR PROGRAM
PROGRAM

TST ' . SYNTAX

BF L1

. SYNTAX PROGRAM ouT

L2

PROGRAM = ' . SYNTAX' . 1D .OUT(' ADR ' *) CLL ST
$ ST BT L2
" END .OQUT('END) ., SET

L1
L3

META II Compiler Output for the PROGRAM Syntax Rule

Hopefully you can now look at the META II compiler description above and recognize that the construct . OUT( * 1)
will turn into an invocation of the GN1L META II pseudo assembly language operator. But what do these pseudo
assembly language operations mean? We will look at that in the next step.

Step 5.2 META |1 order codes

Below is a list of all of the operators of the META 1II parsing machine as given in [Schorre64]. These are called
order codes just as the assembly language operations of a computer of that era were called. This is the language that
appears in the Code window. These are the op codes of the META 1I virtual machine. These are the objects and
operations of the domain of META Il compiling. They are complete in themselves. To move Meta II to a different
language these and only these are the objects and operations that must be implemented in the target language.

META II Order Codes (following figures 6.1 and 6.2 of [Schorre64])
Mnemonic \ Purpose \ Actions

After skipping initial whitespace in the input string compare it to the string given as
argument. If the comparison is met, skip over the string in the input and set switch.
If not met, reset switch.

TST Test for string in
'string' input

After skipping initial whitespace in the input string, test if it begins with an
identifier, i.e., a letter followed by a sequence of letters and/or digits. If so, copy the
identifier to the token buffer; skip over it in the input; and set switch. If not, reset
switch.

ID Identifier token

After deleting initial whitespace in the input string, test if it begins with an number,
NUM Number token  |i.e., a sequence of digits. If so, copy the number to the token buffer; skip over it in
the input; and set switch. If not, reset switch.
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After deleting initial whitespace in the input string, test if it begins with an string,
i.e., a single quote followed by a sequence of any characters other than a single
SR String token quote followed by another single quote. If so, copy the string (including enclosing
quotes) to the token buffer; skip over it in the input; and set switch. If not, reset
switch.

Enter the subroutine beginning at label AAA. Push a stackframe of three cells on
the stack containing:

CLL AAA Call subroutine 1. label 1 cell, initialized to blank
2. label 2 cell, initialized to blank
3. location cell, set to the return from call location

R Return from Return from CLL call to location on the top of the stack and pop the stackframe of
subroutine three cells.

‘SET ‘Set switch ‘Set the switch to true.

B AAA Unconditional Branch unconditionally to the label AAA.
branch

‘BT AAA ‘Branch if true ‘If the switch is true, branch to label AAA.
BF AAA Branchif false |If the switch is false, branch to label AAA.

Branch to error

BE £ false If the switch is false, report error status and halt.
CL Copv literal Copy the variable length string (without enclosing quotes) given as argument to the
‘string' Py output buffer.
‘CI ‘Copy input ‘Copy the token buffer to the output buffer.
If the label 1 cell in the top stackframe is blank, then generate a unique label and
GN1 Generate label 1 save it in the label 1 cell. In either case output the label.
‘GNZ ‘Generate label 2 ‘Same as for GN1 except acting on the label 2 cell.
LB ?,:Iecl)ge to label Set the output buffer column to the first column.
ouT Output record Output the output buffer with line terminator; clear it; and set the output buffer

column to the eighth column.
META 1II Pseudo Operations (following figure 6.3 of [Schorre64])
Mnemonic Purpose Actions

ADR AAA |Starting location |Pseudo operation that specifies the starting label to call.

END End of source ‘Pseudo operation that specifies the end of input.

As mentioned before the above order codes are all you need to implement in your favorite language to port the
META II metacompiler. None of them are very hard to implement. Of course you will also need the translation of
the META II compiler itself into the syntax of your favorite language to call your order codes. We will do an
example which translates the META II compiler into JavaScript and JavaScript objects later. At the end of these
steps you should be able to:

Define a compiler description that ejects your favorite language code

Paste it into the Input window

Have one of the compilers on these web pages generate the translation to your favorite language
Cut the code generated in your favorite language from the Output window

Continue compiler and metacompiler development in your favorite language

M
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Step 5.3" Stepping stone" compiler s between metacompilers

Is the compiler we described above by reordering the rules of META 11 a metacompiler? We can answer that
question using the following steps.

Select the Input "i04. Meta II syntax (i03 reordered)"

Select Code "c02. Meta II of fig. 5, m[i03,c02]"

Click the "Compile" button in the lower left corner and wait for the "Done.".

Click the "Compare Code and Output" button in the lower left corner. The Code and Output do not compare -

so c[104,c02] generated above is not a metacompiler by our textual comparison definition. The Code and

Output do not compare because the syntax rules are generated into the output in order - and the rule order

between the bottom-up 103 description which generated c02 and the top-down 104 description is different.

. Click the Output "Copy to Code" button and Output "Clear" button

Click the "Compile" button in the lower left corner and wait for the "Done.".

7. Click the "Compare Code and Output" button in the lower left corner. It does compare - so it is a
metacompiler.

8. Select Code "c03. Meta Il reordered, c[104,c02], m[104,c03]"

9. Click the "Compare Code and Output" button in the lower left corner. It does compare - proving our new

metacompiler has been named c03

bl S

AN

In the steps above we created the plain compiler c[i04,c02] as a stepping stone in going from the metacompiler
m[i03,c02] to the metacompiler m[i04,c03]. The steps above verified the first of the following two true equalities.
Can you verify the second?

1. c03 = m[i04,c03] = c[i04,c02] = c[i04,m[i03,c02]]
2. ¢02 =m[i03,c02] = ¢c[i03,c03] = ¢[i03,m[i04,c03]]

This is the basic technique for enhancing a metacompiler. Admittedly in this case there is no real enhancement but
we will show a true enhancement in the next section.

Step 6. Making a syntax change

Until now we really haven't extended the original META II. The compiler description 104 in the previous step is
simply a reformatting and reorganization of 103 from figure 5 of the META II paper. In this step we are going to
extend the original META II syntax in a simple way by changing the syntax rule terminator from ., to the more
familiar ; used in many languages.

To get a feel for extending the metacompiler syntax let's do something simple. To change the rule terminator from
., to the more familiar ; used in many languages requires a single change of the 104 ST rule from

ST =.ID.LABEL * "= EX1'.," .QUT('R).,
to
ST = .ID.LABEL * '=' EX1 ';' .QUT('R).,

Notice that we can't change the ., terminating the changed line to a semicolon because the current metacompiler
c03 of the previous step doesn't understand semicolons as a line terminator yet.

The above 104 change has been made as 105. Lets build this compiler.

1. Select the Input "i05. add semicolon line end"
2. Select Code "c03. Meta Il reordered, c[104,c02], m[i104,c03]"
3. Click the "Compile" button in the lower left corner and wait for the "Done.".

What do you think? Is ¢[105,c03] the resulting compiler a metacompiler? The output looks similar. Lets check in the
usual way following the above steps.

1. Click the "Compare Code and Output" button in the lower left corner. The Code and Output do not compare -

9/5/2008 7:54 PM



Tutorial: Metacompilers Part 1 http://www.bayfronttechnologies.com/mc_tutorial.html]

14 of 45

so ¢[105,c03] generated above is not a metacompiler. The Code and Output do not compare because the
Output c[105,c03] compiler from 105 is looking for ; terminated syntax rules while the c03 compiler is looking
for ., terminated syntax rules.

Well perhaps, as with the previous step, c[105,c03] is a stepping stone compiler. Let's check that.

1. Click the Output "Copy to Code" button and Output "Clear" button
2. Click the "Compile" button in the lower left corner and wait for the "Done.".
3. The above compile of c[i05,c[105,c03]] fails with a syntax error where the error <scan> marker points to the
, at the end of the initial PROGRAMrule because this new compiler only accepts semicolons at the end of rule
descriptions. c[i105,c03] is looking for ; terminated syntax rules while the i05 input contains ., terminated
syntax rules.

So it looks like a modification of the syntax requires both a stepping stone compiler and an updated syntax to drive
it. The c[i05,c03] compiler above is looking for ; terminators. We just need an updated syntax to drive it. The Input
106 is 105 with all of the syntax rule terminators changed to ; .

1. Select the Input "i06. use semicolon line end"

2. Click the "Compile" button in the lower left corner and wait for the "Done.".

3. Click the "Compare Code and Output" button in the lower left corner. It does compare - so it is a
metacompiler.

4. Select Code "c04. Meta II semicolons, ¢[105,c03], m[106,c04]"

5. Click the "Compare Code and Output" button in the lower left corner. It does compare - proving our new
metacompiler has been named c04

In the steps above we changed the metacompiler syntax by:

1. Making i05 from 104 that recognizes the new syntax for the existing c03 metacompiler.
2. Creating the plain compiler c[105,c03] as a stepping stone.

3. Making i06 from i05 that uses the defined syntax.

4. Validating that c04 is new expanded metacompiler made as c04 = c[106,c[105,c03]]

The steps above verified the following equality.

1. c¢04 =m[i06,c04] = c[i05,c03] = c[i05,m[i04,c03]]
This is the basic technique for changing the syntax.
Step 7. Making an output semantics change

In this step we are going to change what the metacompiler actually does - it's operational semantics. We are going to
change how Meta II formats output.

Step 7.0 Format semantics requirements

To specify these new semantics we first have to understand how the original META II provided output. In 1964 the
idea of higher level languages (e.g., C and Java) was less than 10 years old. Much of Computer Science was
focussed on how to compile ALGOL 60 to the assembly languages of a very wide variety of computers. The original
META 1I output operators reflect this focus on assembly language. This represents the scope of the perceived
META II domain in 1964. The META II . QUT() construct uses its arguments to output one assembly language line
starting at the op code field. The META II . LABEL construct uses its single argument to output one assembly
language line starting at the label field. In both cases labels were either a literal string, a scanned identifier, or a label
generated by the GN1 or G\2 pseudo operations.

We have to change the above behavior for two reasons. One, we are no longer using only assembly language card
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formatting. We need to supply block structure indenting when necessary in addition to assembly language
formatting. Two, we no longer know what form a label (either generated or scanned identifier) should take in the
target language, so we must create labels in the compiler description. This means we need to be able to splice tokens
to create unique identifiers and labels in the output compilers.

Step 7.1 Define new syntax for format semantics change
To meet these needs we redefine . QUT() and eliminate . LABEL. This new conceptual definition of . QUT() no longer

corresponds to one output line. Instead . OUT() just provides a list of output producing constructs. First we have to
modify the syntax of 106 to support these new needs by changing the 106 oQUT1 rule from

QUTL = '*1 LOUT("GN1') /
tx Q! LOUT( GN2' )/
tox .aut('aty |/
.STRING . QUT('CL '*) .,

to

QUT1 = '*1' OUT(' GN1') /
txQ! LOUT( GN2')
*! LaUT(rat)
.STRING . QUT('CL '*) [/
CH LOUT("GN )/
CONLY LOUT(' NL') /
.LB .OQUT('LB) /
.TB' .OQUT('TB') /
e L QUT("LM )

LM .OUJT('LMD) .,

Notice that the new OUT1 rule only adds alternatives. It doesn't remove any. This is important because we need to be
sure the metacompiler can still build itself.

These meaning of these new OUT1 constructs is shown in the table below with their associated pseudo assembly op
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code.
.OUT . .
construct Mnemonic| Purpose Actions

” GN unique If the label 1 cell in the top stackframe is blank, then generate a unique
number number and save it in the label 1 cell. In either case output the label.

".NL' NL Newline Flush output buffer with ending newline and move to left margin.

"LB' ‘L B ‘Label field ‘Move to output column 1.

"TB' ‘TB ‘Tab ‘Move to the next tab stop.

LM+ LMI Left MAEM I ncrease the left margin, indenting block.
increase

"LM-' LMD Left margin Decrease the left margin, outdenting block.
decrease

The margin commands ' . LM+' and'. LM justincrement or decrement a margin counter. The margin itself gets
inserted as spaces just before the next string output after a ' . NL' . The margin counter defaults to zero. A negative or
zero margin count results in no indenting. The margin commands in this tutorial add or subtract 2 columns to the

margin.

Lets make the metacompiler with the extended oUT1 syntax. How do we know offhand that it will be a
metacompiler? Because we started with 106 the description of c04 = m[i06,c04] a metacompiler and we only

extended the syntax without deleting any as shown above. The extended version of i06 is i07.

Let's compile this compiler.
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Select Input "i07. add new output control"

Select Code "c04. Meta II semicolons, c[105,c03], m[106,c04]"

Click "Compile"

Click "Compare Code and Output” It does not compare because c[i07,c04] recognizes the extended syntax.
Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile"

Click "Compare Code and Output” It does compare so c[i07,c[107,c04]] is a metacompiler.

Select Code "c05. accept new output, c[107,c04], m[i07,c05]"

Click "Compare Code and Output" It does compare so c05 is the name of the new metacompiler.

WX kW=

From the above steps we know the first equality below. You can verify the second. It is because the syntax of 106 is
a subset of 107.

1. ¢05=m[107,c05] = c[107,c[107,c04]]
2. ¢04 =m[i06,c04] = c[i06,c[i06,c05]]

Step 7.2 Remove replaced format syntax and semantics

Since we are using our new constructs, we can eliminate old constructs (and their underlying pseudo assembly
operations). In particular the OUTPUT rule construct . LABEL and the OUT1 rule constructs *1 and * 2 are no longer
needed. Ultimately their underlying pseudo assembly operations LB, GN1, and G\2 will also not be required. Below is
108 the complete compiler recognizing the new constructs and not recognizing the old constructs. Notice that 108 is a
stepping stone syntax because it cannot possibly create a metacompiler. As an example it uses the construct . LABEL
but cannot recognize that syntax. The compiler resulting from 108 exists only to eliminate the older syntax while
using the older syntax.

. SYNTAX PROGRAM
PROGRAM = ' . SYNTAX' .ID .QUT(' ADR ' *)
$ ST
'".END .QUT('END) ;
ST = .ID.LABEL * '='" EX1 ';' .QUT('R) ;

EX1

EX2 $('/' .OUT('BT ' *1) EX2)
. LABEL *1 :

EX2

(EX3 . OUT('BF ' *1) / OUTPUT)
$(EX3 . OUT(' BE') / OUTPUT)
.LABEL *1 ;

EX3 = .1D JOUT(' CLL '*) /
_STRING . OUT('TST '*) /
"D LOUT('ID) /
' NUMBER .OUT('NUM) /
".STRING .OUT('SR) /
(" EXL ') /
" EMPTY' .OUT('SET') [
"$' .LABEL *1 EX3 .QUT(' BT ' *1) .OQUT(' SET") ;

OQUTPUT = '.OQUT" ' ('$OUTL ')"

Z
—
g
Z
Q O -
~
~ e~~~ e~~~

. END

Let's compile this stepping stone compiler.
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Select Input "i08. delete old output control"

Select Code "c05. accept new output, ¢[107,c04], m[i07,c05]"

Click "Compile"

Select Code "c06. reject old output, ¢[108,c05]"

Click "Compare Code and Output" It does compare so c06 is the name of the stepping stone.

nhwbh =

So now what? We have a new stepping stone c06 that recognizes the syntax of the new semantics and can generate
the new pseudo ops but we don't have any inputs that use this new syntax.

Step 7.3 Usethe new format semantics

As with the extension of syntax we did previously our extension of semantics and syntax requires us to rewrite the
input to use our new syntax to link to our new semantic pseudo operations. Using these new constructs we can
restate the metacompiler i108. As an example

EX1 = EX2 $('/' .OUT(' BT ' *1) EX2)
. LABEL *1 :

becomes

EX1 = EX2 $('/' .OUT('BT L'# ) EX2)
LOUT(.LB "L'# )

using a compatible new definition. The above example shows the use of # with token splicing to generate unique
alpha-numeric label names and the use of . LB to put to names into the assembly label field. Below is 109 which is
108 rewritten using our new syntax and semantics. It uses our new constructs to simulate what META 1I originally
did by default. Explicit formatting over implicit formatting naturally makes the description a bit more complex.

. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX' .ID .OUT(.LB .TB 'ADR' * .NL)
‘$.§Il\—lD' _OUT(.TB 'END .NL)

ST = .ID.QUT(.LB * .NL) '=" EX1 ';' .OUT(.TB'R .NL)

EX1 = EX2 $('/' .OQUT(.TB 'BT L'# .NL) EX2 )
LOUT(.LB "L'# .NL) ;

EX2 = (EX3 .OUT(.TB 'BF L'# .NL) / OUTPUT)
$(EX3 .OUT(.TB 'BE .NL) / OUTPUT)
LOUT(.LB 'L'# .NL) ;

EX3 = .1D LOUT(.TB 'CLL '* .NL) /
_STRING . OUT(.TB 'TST '* .NL) /
"D LOUT(.TB 'ID .NL) /
" NUMBER .OUT(.TB'NUM .NL) /
" STRING .OUT(.TB 'SR .NL) /
(" EXL ') /
" EMPTY .OQUT(.TB'SET'" .NL) /

"$ .OUT(.LB 'L'# .NL) EX3 .OUT(.TB 'BT L'# .NL) .OUT(.TB 'SET" .NL) ;

QUTPUT = '.OQUT" ' ('$QUTL ')' ;

QUTL = ' * LOUT(.TB'Cl' .NL)  /
_STRING .OQUT(.TB 'CL '* .NL) /
L LOUT(.TB "GN .NL)  /
"UNL' .ouT(.TB'NL' .NL) /
".LB .oUT(.TB'LB .NL) /
*.TB .OoUT(.TB'TB' .NL) /
" LM¢ .OUT(.TB 'LM' .NL) /

LM . OUT(.TB 'LMD .NL)
. END

So lets build this new metacompiler.
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Select Input "i09. use new output control"

Select Code "c06. reject old output, ¢[108,c05]"

Click "Compile"

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile"

Click "Compare Code and Output" It does compare so c[109,c[109,c06]] is a metacompiler.
Select Code "c07. use new output, c[i09,c06], m[i09,c07]"

Click "Compare Code and Output" It does compare so c07 is the name of the new metacompiler.

e A Gl e

The above steps above verify the equality below.
1. ¢07 =m[i09,c07] = c[i09,c[i08,c05]]
Our new ability to format block structure output will be used in the next step.

Step 7.4 Visualizing the metacompiler " boot" process

The equivalence statements at the end of all the steps we have done so far can be formed into a graph. In the
diagram below the different codes are shown as circles and the arcs from one circle to another is the input that
compiled with the code at the base of the arc creates the code at the arrowhead terminated part of the arc. It's easy to
see the metacompilers. They are the codes that have an arc from themselves to themselves indicating they can
reproduce themselves from an input description. The "stepping stone" compilers are codes like c06 with one input
and one output between two metacompilers.
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Step 8. Making an implementation language change

Now we have finer output controls and the ability to splice tokens in the output to make new identifiers and labels,
we can define output for a block structured language such as JavaScript which runs in the web browser. Below is
110 a modification of 109 where JavaScript replaces the META II pseudo assembly code. The recognized syntax for
109 and 110 is the same as can be show by the following steps:

Select Input "i09. use new output control"

Click "Extract Syntax to Output" button in the lower left corner

Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i10. convert 109 to js functions"

Click "Extract Syntax to Output" button in the lower left corner

Click "Compare Code and Output" The two syntax specifications compare.

AN
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In the following 110 description we use the left margin modifiers . LM+ and . LM to indent the blocks of functions, if
statements, and while statements. Also each of the pseudo assembly language statements is converted into a function
call that sets a global boolean f | ag variable (e.g., the META II pseudo assembly TST ' . SYNTAX' is simply turned
into the JavaScript function r unTST(' . SYNTAX' ) ; . Further there is a lot of explicit runtime support that had been
previously hidden in these web pages. As an example out buf the output buffer is explicitly declared in the PROGRAM
rule. At the end of this tutorial there will be no hidden runtime support at all. The Output window will contain all
the code needed to implement the compiler in JavaScript. For now don't worry about the runtime details just
examine the overall structure of the description. The syntax is just like 109 but with JavaScript code generation
rather than Meta II pseudo assembly code generation.

. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX' .ID

.OUT(.LB "// "*" conpiler' .NL)
.QUT(' function conpiler (input) {' .LM .NL)
.QUT("inbuf = input ;' .NL)
LOUT("inp =0 ;" .NL)
.OUT('outbuf ="" ;" _NL)
.OUT("margin = 0 ;' .NL)
.QUT('gnlabel =1 ;" .N)
LOUT("rule *' () ;" . NL)
.QUT('return outbuf ;' .NL)
CJOUT(. LM "} ;' UNL . NL)

$ST
. END

ST = .ID .QUT(.LB 'function rule‘*‘ () {" LM .N)
.QUT('var rname = ""*'" ;' _NL)

QUT('var rlabel =0 ;" .NL)

= EX1';'

CJOUT(L LM "} o' UNL L NL)

EXL = EX2 $(' /' .OUT("if ('flag) {' .LMr .NL) EX2 .OUT(.LM '} ;' .NL) ) ;

EX2 = (EX3 .QUT("if (flag) {' .LM+ .NL) / OUTPUT .QUT('if (true) {' .LM- .NL) )
$(EX3 .QUT("if ('flag) runBEj sfn(rnanme);' .NL) / OUTPUT)

JOUT(. LM '} ' L NL)
EX3 = .ID LQUT(rule" > (), ONL)

.STRING . OQUT('runTST('*');"' .NL) /

"D LOUT("runlD() ;" . NL) /

" NUMBER . QUT('runNUM);' .NL) /

".STRING .OUT('runSR();' .NL) /

P EXL ) /
- EMPTY' . QUT(' runSET();" .NL) /

3 . OQUT(" runSET() . NL)
.OUT("while (flag) {' .LM+ .NL)
EX3
LOUT(' ) LM U NL)

.OUT(' runSET();" .NL) ;

QUTPUT = '.QUT" ' ('$QUTL ')" ;
QUTL = ' * LOUT("runCl ()" .NL) /
.STRING . OUT(' runCL(" *" )-' CNL) /
i3 LOUT(' i f (rlabel == 0) { rIabeI = gnl abel; gnlabel++ ; } ;' .NL)
. OUT(! runCL(rIabeI toStrlng()) .NL) /
"N .OUT(" runextNL();" . NL)
'L LB . OUT(' runLB() ;" .NL) /
'L TB .OQUT('runext TB() ;' .NL) /

"LLME L OUT( runext LM () ;" . NL) /
".LM' . OUT('runextLMD();' .NL) :

. END

So let's build this new metacompiler through a stepping stone.

1. Select Input "i10. convert 109 to js functions"
2. Select Code "c07. use new output, c[i09,c06], m[i09,c07]"
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3. Click "Compile"
4. Select Code "c08. compile to js functions, ¢[i10,c07]"
5. Click "Compare Code and Output" It does compare so c08 = ¢[i110,c07] is the stepping stone.
6. Click the Output "Copy to Code" button and Output "Clear" button
7. Click "Compile"
8. Click "Compare Code and Output" It does compare so c[i110,c[110,c07]] is a metacompiler.
9. Select Code "c07jf. compile to js functions, c[i10,c08], m[110,c07;f]"
10. Click "Compare Code and Output" It does compare so c07 is the name of the new metacompiler.

Notice above that we chose to call the new JavaScript metacompiler c07jf because the syntax and semantics it
accepts and operates on are the same as c07 - only the hidden implementation is different. So just as we built cO7jf
from c¢07 we can build c07 from c07jf with the following steps.

Select Input "i09. use new output control"

Select Code "c07jf. compile to js functions, c[i10,c08], m[i10,c07jf]"

Click "Compile"

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile"

Select Code "c07. use new output, c[i09,c06], m[i109,c07]"

Click "Compare Code and Output" It does compare so c07 is the built compiler.

NownhkwLwh -

After all the goal of the original 1964 META II work to be able to easily generate compatible compilers for a wide
variety of implementing technologies.

Step 9. Comparing implementations

The table below breaks out the EX2 Input syntax rule to highlight the differences and techniques used in the two
different implementations. The domain specific role of the EX2 syntax rule is to enforce the definition of sequence
the AND specification of syntactic constructs. As presented before in this domain-specific language in a construct
suchas (AL A2 ... An/ Bl B2 ... Bn) the AL A2 ... An syntax represents a sequence where if Al is
recognized then A2 ... An must also be recognized or an error occurs and compiling stops. The syntax for EX2 uses
the recognizer (EX3 / OUTPUT) for the members of the sequence in recognition that code generating OUTPUT
members of the sequence are defined by the domain not to recognize anything and always to succeed.

The pseudo assembly uses a lot of labels while the JavaScript functions use a lot of nesting. There is also a lot of
similar looking inefficient code between the two (e.g., the pseudo assembly BF L18 when L18 is on the next line or
the JavaScripti f (flag) { } ;). These come from general code templates say for a sequence allowing multiple
members being used on a sequence with only one member. Domain-specific optimizing transformation may be used
to remove these but we will not cover those in this tutorial. Suffice it to say this general output can be highly
optimized.

\ i09 and 110 complete syntax

. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX' .I1D $ST '.END

ST=.ID'=" EX1';' ;
EX1 = EX2 $( '/' EX2 ) ;
EX2 = (EX3 / OUTPUT)

EX3 = .ID/ .STRING /
" ID / '.NUMBER / '.STRING /
(" EXL ')/ 'LEMPTY / '$ EX3 ;
QUTPUT = '.OUT" ' (' $OQUTL ')’ ;
QUTL = '*' [ .STRING/ '# | '.N.' /
LB/ LTB [ LLME /LM
END

9/5/2008 7:54 PM



Tutorial: Metacompilers Part 1

http://www.bayfronttechnologies.com/mc_tutorial.html]

109 EX2 for pseudo assembly

110 EX2 for JavaScript function

EX2 = (EX3 .QUT(.TB "BF L'# .NL) / |[EX2 = (EX3 .OUT("if (flag) {' .LMt .NL) /
OUTPUT) OUTPUT . OUT('if (true) {' .LM- .NL) )
$(EX3 .QUT(.TB "BE'" .NL) / $(EX3 .QUT('if (!flag) runBEjsfn(rnanme);' .NL) /

OUTPUT) OUTPUT)
.OUT(.LB "L"# .NL) LOUT(. LM "} 5t ONL)
c07 pseudo assembly EX2 code c07jf JavaScript function EX2 code
function rul eEX2 () {
EX2 var rnanme = "EX2" ;
CLL EX3 var rlabel = 0 ;
BF L11 rul eEX3();
B if (flag) {
CL "BF L runCL("if (flag) {');
GN runext LM ();
NL runext NL();
L11 } o
BT L12 if ('flag) {
CLL ouTPUT rul eQUTPUT() ;
BF L13 if (flag) {
L13 runCL("if (true) {');
L12 runext LM ();
BF L14 runext NL();
L15 } o
CLL EX3 } o
BF L16 if (flag) {
TB runSET() ;
CL ' BE while (flag) {
NL rul eEX3();
L16 if (flag) {
BT L17 runCL("if (!flag) runBEj sfn(rname);"');
CLL OUTPUT runext NL() ;
BF L18 } o
L18 if ('flag) {
L17 rul eQUTPUT() ;
BT L15 if (flag) {
SET b
BE b
LB b
CL'L runSET() ;
GN if ('flag) runBEjsfn(rnane);
NL runext LMD() ;
L14 runCL('} ;');
L19 runext NL() ;
R b
b

Comparing pseudo assembly and JavaScript function code for EX2 rule

Some features completely unrelated to the problem domain have been added to the JavaScript implementation. As

an example consider the definition of the rule name added to each function (var rnane

= "EX2"

; above). Itis

only there so that halts on errors (BE in the pseudo assembly and r unBEj sf n in the JavaScript code) can report the

name of the rule causing the error stop.

Step 10. Making a token semantics change

In this step we are going to change the metacompiler semantics again. We are going to change how tokens are

defined.

Step 10.0 Token requirements

Up to this point all of the compilers we have made have relied upon built-in tokens as personified in the syntax by
. 1 Dan identifier (pseudo op I D), . NUMBER an number (pseudo op NUM), and . STRI NG a singly quoted string (pseudo

22 of 45

9/5/2008 7:54 PM



Tutorial: Metacompilers Part 1

23 of 45

op SR). Implicitly we have also relied on a definition of whitespace that separates these tokens and literal strings.

We have to change the above behavior for one simple reason. If we are implementing a standard compiler for a
language that was not defined by ourselves, the token and whitespace definitions are just not up to ourselves. We
will need the flexibility to describe a language's tokens without rewriting the token code all the time.

Step 10.1 Define new syntax for token semantics change
We make the simple observation that the following domain-specific constructs have allowed us to combine the

tokens. I D, . NUMBER, and . STRI NGin flexible ways to recognize syntax rules. Why shouldn't the same constructs
allow us to combine individual characters in flexible ways to recognize token rules?

‘ Construct ‘ M eaning ‘Concept Name
‘string in single quotes ‘recognize the given string ‘Iiteral string
‘rule name ‘recognize the given syntax rule ‘invocation

Al B recognize A or B alternation (OR)
A B recognize A and B sequence (AND)
‘. EMPTY ‘recognize nothing, always succeed ‘Option (NOT)
‘$A ‘repeat A until not recognized ‘iter ation

‘( A B) ‘ group recognition constructs ‘precedence

To meet these needs we need to define two types of syntax rules. Character rules determine what set of characters
they will accept. Token rules determine how the characters accepted may be formed into tokens. The new syntax for
TR, token rules, should look familiar. The TX rules are token rules and the CX rules are character rules.

TR=.ID":" TXL';' ;
TXL = TX2 $(' /" TX2 ) ;
TX2 = TX3 $ TX3 ;
TX3 = '.TOKEN / '.DELTOK / '$' TX3 /
"UANYBUT(' CX1 ')' / '.ANY(' CX1')' /[ .ID/ '(* TXL')' ;
CX1 = CX2 $( '!' CX2 ) ;
CX2 = CX3 ( ':' CX3 / .EMPTY) ;
CX3 = . NUMBER ;

The above syntax allows for TR definitions such as those shown below

ID : . TOKEN ALPHA $(ALPHA / DIGT) .DELTOK ;
NUMBER : .TOKEN DIG T $DIG T . DELTOK ;

ALPHA : . ANY(65: 90! 97:122) ;

DIGT : .ANY(48:57) ;

where the numbers are the ASCII character codes. The syntax . ANY(65: 90! 97: 122) means accept any upper case
alphabetic ASCII character (character codes 65 through 90) or any lower case alphabetic ASCII character (character
codes 97 through 122).

Step 10.2 Make a stepping stone between old and new token semantics

First we have to extend the syntax of 109 to support these new needs. As before with semantics changes we are
building a stepping stone compiler. Two of the constructs we are trying to eliminate (. | D and . NUMBER) are used to
define our new token definitions.

Below is the entire definition of i11 made from 109 by redefining PR from ST to indicate parse rules, TR to indicate
token rules, adding the TX token rules, and adding the CX character rules. Also a . NUMBER alternative has been
added to the existing OUT1 rule to be able to output a character using its numerical character code.
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. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX' .ID .OUT(.LB .TB 'ADR' * .NL)
$ PR
" TOKENS'
$ TR
".END .OUT(.TB'END .NL)
PR=.ID.OUT(.LB* .NL) '=" EX1';' .OUT(.TB'R .NL)
TR=.ID.OUT(.LB* .NL) ':' TX1 ';' .OUT(.TB'R .NL) ;
EXL = EX2 $('/' .OUT(.TB 'BT L'# .NL) EX2 )
LOUT(.LB "L'# .NL) ;
EX2 = (EX3 .QUT(.TB 'BF L'# .NL) / OUTPUT)
$(EX3 .OUT(.TB 'BE .NL) / OUTPUT)
JOUT(.LB "L'# .NL) ;
EX3 = .1D LOUT(.TB "CLL '* .NL) /
_STRING .OUT(.TB'TST '* .NL) /
"D LOUT(.TB 'ID .NL) /
" NUMBER .OUT(.TB 'NUM .NL) /
".STRING .OUT(.TB 'SR .NL) /
(" EXL ') /
" EMPTY' .OUT(.TB 'SET'" .NL) /
"$' .OUT(.LB 'L'# .NL) EX3 .OUT(.TB 'BT L'# .NL) .OUT(.TB ' SET'
QUTPUT = '.OUT" ' ('$OUTL ')’
QUTL = ' * LOUT(.TB 'Cl' .NL)  /
STRING . QUT(.TB 'CL '* .NL) /
NUVBER . OUT(.TB 'CC '* .NL) /
#' LOUT(.TB "GN .NL) ~ /
N’ .OoUT(.TB 'NL' .NL) /
".LB .OoUT(.TB'LB .NL) /
TB .OUT(.TB'TB .NL) /
LM L OUT(.TB 'LM' .NL) /
LM' .OUT(.TB 'LMD .NL) ;
TXL = TX2 $('/' .OUT(.TB 'BT T'# .NL) TX2)
LOUT(.LB 'T'# .NL) ;
TX2 = TX3 . OUT(.TB 'BF T' # .NL)
$(TX3 .OUT(.TB 'R .NL) )
LOUT(.LB 'T'# . NL) ;
TX3 = ( '.TOKEN LOUT(.TB " TFT' .NL) /
" DELTOK' LOUT(.TB 'TFF .NL) /
"$ .OUT(.LB'T'# .NL) TX3 .QUT(.TB 'BT T'# .NL) )
.OUT(.TB ' SET' .NL)
" ANYBUT(' CX1 ')' .OUT(.TB 'NOT" .NL .TB'SCN .NL) /
"UANY(' CX1 ') .OUT(.TB "SCN .NL) /
1D LOUT(.TB "CLL ' * .NL) /
I(I Txll)l .
CX1 = CX2 $('!'" .OUT(.TB 'BT C# .NL) CX2) .OUT(.LB'C # .NL)
CX2 = CX3 (':' .OUT(.TB "CGE' * .NL) .OUT(.TB 'BF D # .NL)
cx3
LOUT(.TB "CLE ' * .NL) .OUT(.LB'D # .NL) /
_EMPTY . OUT(.TB 'CE ' * .NL) )
CX3 = . NUVBER ;
. END
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. NL)

The above pseudo assembly description adds pseudo operators primarily in the TX and CX rules for token scanning.

It doesn't remove any pseudo operators or syntax. Once again this is important because we need to be sure the
existing metacompiler can build this description. The location, mnemonic, and meaning of these new pseudo

operators is shown in the table below.
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\ Rule \ Mnemonic \ Purpose

‘OUTl ‘CC number ‘copy char code to output

‘TXZ ‘RF ‘retum from rule if parse flag false

TX3 TFT set token flag true and clear token

TX3 TFF set token flag false

‘TX3 ‘NOT ‘parse flag set to not parse flag

‘TXS ‘SCN ‘if parse flag, scan input character; if token flag, add to token
‘CXZ ‘CGE number ‘parse flag set to input char code >= number

‘CXZ ‘CL E number ‘parse flag set to input char code <= number

CX2 CE number |parse flag set to input char code = number

EX3of i12|LCH number |set parse flag, place char code as a string in token buffer

Let's make the stepping stone compiler with the extended syntax. The extended version of 109 is il 1.

Select Input "il1. add token rules to 109"

Select Code "c07. use new output, c[i09,c06], m[i109,c07]"

Click "Compile"

Select Code "c09. accept tokens, c[il1,c07]"

Click "Compare Code and Output” It does compare so c09 is the name of the stepping stone.

M S

From the above steps we know the first equality below.
1. ¢09 =c[il1,c07]

So now what? We have a new stepping stone c09 that recognizes the syntax of the new semantics and can generate
the new pseudo ops but we don't have any inputs that use this new syntax.

Step 10.3 Use the new token semantics

Since we are using our new constructs, we can eliminate old constructs (and their underlying pseudo assembly
operations). In particular all reference to and usage of the built-in tokens . | D an identifier (pseudo op | D), . NUMBER
an number (pseudo op NUM), and . STRI NG a singly quoted string (pseudo op SR) must be replaced with compatible
token definitions. Further we have also relied on an implicit definition of whitespace that separates these tokens and
literal strings. To meet this need we define a specially named token rule PREFI X to be used to explicitly define
whitespace before any literal string recognition. Below are the compatible token definitions to replace the built-in
tokens we have been using.

. TOKENS

PREFI X : $. ANY(32!9!13!10) ;

ID : PREFI X . TOKEN ALPHA $(ALPHA/DIG T) . DELTCK ;

NUMBER : PREFI X .TOKEN DIG T $DIA@ T . DELTXK ;

STRING : PREFI X . ANY(39) . TOKEN $. ANYBUT( 13! 10! 39) .DELTOK . ANY(39) ;

ALPHA : . ANY(65:90!97:122) ;
DIGT : .ANY(48:57) ;
. END

Below is 112 an updated 111 the complete compiler recognizing the new constructs and not recognizing the old
constructs. Largely the changes consist of adding the above token definitions, renaming all token references (i.e.,

. 1 Dbecomes | D) and eliminating the recognition of the built-in tokens in EX3 (e.g., ' . I D' is no longer recognized).
This means that 112 should create a metacompiler because it can recognize it's own syntax. Note that we have added
a new built-in token . LI TCHR in EX3 which can recognize any one character and place the decimal numeric string of
its character code in the token buffer. This will become useful in the next section when we discuss building
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compilers that use character sets other than ASCII.

. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX'

$ PR
' . TOKENS'
$ TR

'.END .OUT(.TB ' END

PR=1D.OUT(.LB* .NL) '=' EX1

TR =1D.OUT(.LB * .NL)

EXL = EX2 $('/' .OUT(.TB 'BT L'# .NL) EX2 )
LOUT(.LB 'L'# .NL) ;
EX2 = (EX3 .OUT(.TB 'BF L'# .NL) / OUTPUT)
$(EX3 .OUT(.TB 'BE .NL) / OUTPUT)
LOUT(.LB 'L'# .NL) ;
EX3 = ID LOUT(.TB 'CLL '* .NL) /
STRING  .OUT(.TB 'TST ' 39 * 39 .NL) /
I(I Exll)l /
" EMPTY' . OUT(.TB 'SET" .NL) /
" LITCHR .OUT(.TB 'LCH .NL) /
"$' .OUT(.LB 'L'# .NL) EX3 .OUT(.TB 'BT L'# .NL) .OUT(.TB ' SET'
QUTPUT = '.OUT" ' ('$OUTL ')’
oUTL = ' * LOUT(.TB 'Cl' .NL) /
STRING .OUT(.TB 'CL ' 39 * 39 .NL) /
NUVBER .OUT(.TB 'CC '* .NL) /
g LOUT(.TB 'GN' . NL) /
*UNL LOUT(.TB 'NL' . NL) /
".LB .ouT(.TB 'LB .NL) /
*.TB .ouT(.TB 'TB .NL) /
".LMe .OUT(.TB 'LM' .NL) /
*.LM' .OUT(.TB 'LMD .NL) :
TXL = TX2 $('/' .OUT(.TB 'BT T'# .NL) TX2)
LOUT(.LB 'T' # .NL) ;
TX2 = TX3 . OUT(.TB 'BF T'# . NL)
$(TX3 .OQUT(.TB 'RF .NL) )
LOUT(.LB 'T'# . NL) ;
TX3 = ( '.TOKEN LOUT(.TB ' TFT' . NL) /
" DELTOK' .ouUT(.TB ' TFF' . NL) /
"$' .OUT(.LB'T'# .NL) TX3 .QUT(.TB 'BT T'# .NL) )
.OUT(.TB ' SET' .NL)
* ANYBUT(' CX1 ')' .OUT(.TB 'NOT" .NL .TB 'SCN .NL) /
"UANY(' CX1 ') .OUT(.TB 'SCN . NL) /
I D LOUT(.TB 'CLL ' * .NL) /
I(I Txll)l .
CX1 = CX2 $('!' .OUT(.TB 'BT C# .NL) CX2) .OUT(.LB'C # .NL)
CX2 = CX3 (':" .OUT(.TB 'CGE ' * .NL) .OUT(.TB 'BF D # .NL)
cxX3
LOUT(.TB 'CLE' * .NL) .OUT(.LB'D # .NL) /
.EMPTY .OQUT(.TB 'CE ' * .NL) )
CX3 = NUMBER ;
. TOKENS
PREFI X : $. ANY(32!9!13!10) ;
ID © PREFI X . TOKEN ALPHA $(ALPHA/DIGIT) .DELTCK ;
NUVBER : PREFIX . TOKEN DIG T $DIG T . DELTCK ;
STRING : PREFI X . ANY(39) . TOKEN $. ANYBUT(13! 10! 39) . DELTOK . ANY(39)
ALPHA : . ANY(65: 90! 97: 122)
DIGT : .ANY(48:57) ;
. END

X1

ID.QUT(.LB .TB ' ADR '

. NL)

*
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. NL)

"t OUT(.TB 'R .NL) ;

"t LOUT(.TB'R .NL) ;
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So lets build this new metacompiler.

Select Input "i12. use token rules"

Select Code "c09. accept tokens, c[il1,c07]"

Click "Compile"

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile"

Click "Compare Code and Output" It does compare so c[i12,c09] is a metacompiler.
Select Code "c10. use tokens, c[i12,c09], m[i12,c10]"

Click "Compare Code and Output" It does compare so c10 is the built metacompiler.

RN R WD =

The above steps above verify the first equality below in expanding metacompiler c07 to c10. Since the c07jf
metacompiler is functionally equivalent to c07 we can also expand that series. Can you verify the second equality
for the series implemented as JavaScript functions?

1. ¢10=m[i12,c10] = ¢[i12,c09] = c[i12,c[i11,c07]]
2. ¢10jf = m[i12jf,c10jf] = c[i12j£,c09if] = c[il2jf.c[il 1jf,c07if]]

As metacompilers c07 and c07jf were functionally equivalent so are c10 and c10jf. The following steps can verify
the equivalence of their syntax.

Select Input "i12. use token rules"

Click "Extract Syntax to Output" button in the lower left corner

Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i12jf. use token rules"

Click "Extract Syntax to Output" button in the lower left corner

Click "Compare Code and Output" The two syntax specifications compare.

AN

You can also verify the following equalities that these metacompilers can cross compile each other.

1. ¢10=mlil12,c10] = c[i12,c[i12,c10jf]
2. ¢10jf = m[i12jf,c10jf] = c[i12jf,c[i12jf,c10]]

Step 10.4 A note about efficiency

As you verify the above equalities you may note that the JavaScript function implementation is much faster than the
pseudo assembly implementation. JavaScript is an interpreter implemented in the browser. The pseudo assembly
implementation is an inefficient but clear interpreter implemented by us over the browser JavaScript interpreter. We
will provide links to all these codes later in this tutorial. The point of this comment is to dispel any fears that
metacompiling is inherently slow. Once ported to a compiled implementation language or native assembly language
it is fast enough to compile or scan millions of lines quickly. We've done it.

Step 10.5 Visualizing building and using compatible metacompilers
Once again the equivalence statements from the steps creating two compatible metacompilers c¢10 and c10jf with
different implementations from the single c07 metacompiler may be visualized. In this diagram the small circles are

anonymous "stepping stone" codes represented in the Metacompiler Workshop by the "Copy Output to Code"
button and in equalities such as ¢07 = ¢[109,¢[109,c07jf]].
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Step 11. Making input language semantics change

The semantics changes in this step are niceties to reinforce once again the rhythm of how the metacompilers are
expanded to allow new capabilities.

Step 11.0 Comment and language requirements

As the c10 series metacompiler stands now there are no comments in the input and tokens are described using
ASCII numeric character codes.

I hardly need to rationalize the need for comments - especially if you have looked at the long input forms of this

tutorial without a single comment. We needed token definitions and whitespace PREFI X definition of the last step to
create good comment definitions.
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If we wanted to build a compiler that could compile (or scan) source defined in Unicode characters (say web pages),
then our choice to use only ASCII character codes to define tokens is limiting. This is true even though ASCII is a
subset of Unicode. Further looking up ASCII codes is error prone. Why not just put in the character you want? In
step 10.3 we added . LI TCHR to 112 which accepts the current input character and places its numeric value as a string
in the token buffer. Notice its definition is independent of the size the character code. . LI TCHR allows for the
definition of tokens in the character coding system used to define the input.

Step 11.1 Define new syntax for comment and language semantics change

We will be modifying the 112 syntax to provide these changes in i13. The new and changed i13 rules are given
below.

. SYNTAX

PROGRAM = ' . SYNTAX' | D $(PR / COMMENT) '.TOKENS' $(TR / COWMVENT) '.END
COMMENT = '[' CMLINE ']’ ;

CX3 = NUMBER / SQUOTE . LI TCHR ;

. TOKENS

SQUOTE : PREFI X . ANY(39) ;

CMLINE : .TOKEN $. ANYBUT(10! 13! 93) .DELTCK ;

. END

Basically the PROGRAMrule is changed to accept a COMVENT anywhere a parse rule or token rule is acceptable. A
COWMENT is defined to be any characters except linefeed (10), return (13), and right square bracket (93) enclosed in
square brackets. The CX3 rule which currently specifies character codes gets another alternative which allows token
character code specification with a single quote and the character itself. The above syntax allows definitions such as
those below.

[ al phabetic characters ]

ALPHA : .ANY('A'Zl'a:'z) ;
[ nuneral characters ]
DGAT : .ANY('0:'9) ;

where the character codes are taken from the input character code using the . LI TCHR (pseudo op code LCH).
Step 11.2 Make a stepping stone between old and new comment and language semantics

Lets make the stepping stone compiler with the extended syntax. The extended version of 112 is i13.

Select Input "i13. add comments and litchr to 112"

Select Code "c10. use tokens, c[i12,c09], m[i12,c10]"

Click "Compile"

Select Code "c11. accept comments, c[i13,c10]"

Click "Compare Code and Output" It does compare so c11 is the name of the stepping stone.

Nhwh =

From the above steps we know the first equality below.
1. cl1=cJil3,c10]

So with a new stepping stone c11 that recognizes the syntax of the new semantics and can generate the new pseudo
ops we can prepare inputs that use this new syntax.

Step 11.3 Use the new comment and language semantics

So lets build this new metacompiler.

1. Select Input "i14. use comments and litchr"
2. Select Code "c11. accept comments, c[i13,c10]"
3. Click "Compile"
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Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile"

Click "Compare Code and Output" It does compare so c[i14,c11] is a metacompiler.
Select Code "c12. use comments, c[il4,c11], m[il4,c12]"

Click "Compare Code and Output" It does compare so c12 is the built metacompiler.

NN

The above steps above verity the first equality below in expanding metacompiler c10 to c12. Since the c10jf
metacompiler is functionally equivalent to ¢10 we can also expand c10jf to make a compatible c12jf metacompiler.
Can you verify the second equality for the series implemented as JavaScript functions?

1. c12=m[il4,c12] = ¢[il4,c11] = c[il4,c[i13,c10]]
2. cl12jf = m[il4jf,c12jf] = c[il4jf,c11jf] = c[il4jf,c[i13jf,c10f]]

As metacompilers c¢10 and c10jf were functionally equivalent so are c12 and c12jf. The equivalence of their syntax
can be verified by the following steps.

Select Input "i14. use token rules"

Click "Extract Syntax to Output" button in the lower left corner

Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i14jf. use token rules"

Click "Extract Syntax to Output" button in the lower left corner

Click "Compare Code and Output" The two syntax specifications compare.

AN

You can also verify the following equalities that these metacompilers can cross compile each other.

1. c12=mlil4,c12] = c[il4,c[il4,c12if]
2. cl12jf = m[il4jf,c12jf] = c[il4jf,c[i14jf,c12]]

or we could say

1. c12 =mlil4,c12] = c[il4,c[il4,c12%]
2. c12jf = m[il4jf,c12jf] = c[il4jf,c[i14jf,c12*]]

where c12* indicates any c12 series metacompiler.
Step 12. Making an object implementation

Building the compilers so far has relied on a lot of "behind the scenes" support for the generated code. The pseudo
assembly style of META 1II used relies on a interpreter implemented in JavaScript. The JavaScript function code
relies on runtime functions implemented in JavaScript (e.g., r unCLL). In this step we are going to generate a
completely contained JavaScript object that requires no external support.

Step 12.0 Object requirements

All of the runtime support routines must be folded into the object definition along with the ability to provide error
information on failures. The implementation must be simple and clear enough to allow for its adoption in any
object-oriented language.

The object implementation generates a single object called conpi | er. You will need to rename it depending on the
environment in which it is placed. The conpi I er object supports one public function conpi | e that takes one
argument i nput the string to compile. conpi | e returns a boolean value indicating the success of the compilation. On
a successful compilation the public string variable out buf contains the compiled output. If the compilation fails the
following information in public variables is available:

1. erul e - string, the name of the parse or token rule that failed
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2. ei nput - number, the index into the i nput that failed
3. token - string, the last token successfully recognized
4. out buf - string, the collected output before the failure

Step 12.1 Define new syntax for wholly contained object semantics change

The JavaScript object definition i114js is derived from the JavaScript function definition i14jf. There is no real
change in the recognized syntax. However the old scheme of extracting the syntax and simply comparing will not
work because we have added two rules PREAMBLE and POSTAMBLE. These rules consist only of . OUT statements
providing architecture and runtime. They embody the kinds of properties and methods that would be found in a base
abstract object from which a collection of compiler objects could be descended. However in this case we've chosen
to create a wholly contained object for each compiler. The PREAMBLE code connects the object to the outside world
by defining the conpi | e function. The POSTAMBLE code defines the variable and runtime support functions. These
would be private definitions in a hierarchical object. The following steps can prove the accepted syntax has not
changed.

Select Input "i14jf. use token rules"

Click "Extract Syntax to Output" button in the lower left corner

Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i14js. convert i14jf to js object"

Click "Extract Syntax to Output" button in the lower left corner

Manually delete PROGRAMrule references to rules PREAMBLE and POSTAMBLE.
Manually delete rules PREAMBLE and POSTAVBLE

Click "Compare Code and Output" The two syntax specifications compare.

NI R WD =

The Input description i14js seems large but remember it is carrying all the runtime for all compilers that can be
generated by it.

Step 12.2 Build the new metacompiler

Because there has been no change in syntax or function in i14js only a change in implementation, then we can just
boot this new c12js metacompiler the same way we built c12jf. This time lets use c12jf as it's faster and any c12
series will do.

Select Input "i14js. convert i14jf to js object"

Select Code "c12jf. use comments, c[il14jf,c11jf], m[i14jf,c12jf]"

Click "Compile" (create stepping stone)

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile" (use stepping stone, create c12js metacompiler)

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile" (use c12js metacompiler)

Click "Compare Code and Output" It does compare so c[il14js,c[i14]s,c12jf] is a metacompiler.
Select Code "c12js. use comments, c[il4js,c[i14js,c12jf]] m[i14js,c12js]"

Click "Compare Code and Output" It does compare so c12js is the built metacompiler.

SO B WD =

—

So restating and adding to the equalities of the previous step. We now have thee members of the c12 series of
metacompilers. For one of them, c12js, you have the complete description i14js and output code.

1. c12=m[il4,c12] = c[il4,c[il4,c12¥]
2. c12jf=ml[i14jf,c12jf] = c[i14jf,c[i14jf,c12*]]
3. cl12js =m[il4js,c12js] = c[il4js,c[i14]s,c12*]]

Where the c12* indicates any c12 series metacompiler.
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Step 12.3 Visualizing cross compiling metacompilers

The diagram below visualizes the effort to develop and maintain compatible cross compiling metacompilers. Even
though it looks complex there are really only three versions of 114 - one for each platform supported. The diagram
also shows the final semantics extension we will make to the c12js metacompiler in the next step of this first
tutorial.

compatible
metacompilers
in two
implementations

compatible
metacompilers
in three
implementations

i15]s backtracking
added

Step 13. Adding backtracking semantics

Some of the previous input has been cleverly written to avoid limitations. We will demonstrate and discuss an
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example of this and show how a new semantics can remove the limitation.
Step 13.0 Backtracking and error handling requirements

The idea of backtracking is that under certain circumstances the compiler backtracks and re-reads part or all of the
input string. It is related to error handling in that the compiler may use backtracking to re-read an input containing a
syntax error such as a source line, place it into an error message, and then continue on compiling effectively
ignoring the erroneous line.

Some languages require the declaration of functions before they can be referenced. This requires the simplest kind
of backtracking namely multiple passes over the source file for different reasons. This can easily be accommodated
in our i15js description by adding a . PASS primitive to the EX3 parse rule which resets the input position back to the
beginning of the input string.

" PASS  .OUT('this.inp =0 ;' .N) /
The need for a more subtle form of backtracking may be demonstrated by extending 102 the arithmetic expression

compiler AEXP to include some relational and shift operators as might be found in most general purpose languages.
After adding the new formatting and the new RX parse rules we might create i02a as given below.

. SYNTAX AEXP
AEXP = AS $AS ;
AS = ID.OUT(.TB 'address ' * .NL) ':=' EX1 .OUT(.TB 'store' .NL) ';'
RX1 = RX2 ('=' RX2 .OUT(.TB 'eq .NL) /

"< RX2 .OUT(.TB'It' .NL) /

"> RX2 .OUT(.TB 'gt' .NL) /

'<=' RX2 .OUT(.TB 'le'" .NL) /

">=' RX2 .OUT(.TB 'ge' .NL) /

.EMPTY) ;
RX2 = '~ EX0 .OUT(.TB 'not' .NL) / EXO

EX0 = EX1 ('<-' EX1 .OUT(.TB 'shi' .NL) /
"> EX2 .OUT(.TB 'shr' .NL)
.EMPTY) ;

EXL = EX2 $(' + EX2 .OUT(.TB 'add' .NL)

"' EX2 .OUT(.TB 'sub' .NL)

EX3 $('*' EX3 .OUT(.TB 'npy' .NL)

~

~— ~— ~

EX2 =
“/* EX3 .OUT(.TB 'div' .NL)
EX3 = EX4 $('~' EX3 .OUT(.TB 'exp' .NL)) :
EX4 = '+ EX5/ '-' EX5 .OUT(.TB 'minus .NL) / EX5
EX5 = ID .OUT(.TB 'load ' * .NL) /
NUMBER . OUT(.TB 'literal ' * .NL) /
(EXL ')
. TOKENS

PREFI X : $. ANY(32!9!13!10) ;
ID © PREFIX . TOKEN . ANY('A:'Z!"a:'z) $(.ANY(' A" Z!"a:'z) / .ANY('0:'9)) .DELTOK
NUMBER : PREFI X . TOKEN . ANY(' 0:'9) $. ANY(' 0:'9) .DELTOK ;

. END

First lets test that this new 102a AEXP compiler can compile 101 our original set of assignment expressions.

Select Input "i02a. demo, AEXP example assignment compiler"

Select Code "c12js. use comments, c[il4js,c[i14js,c12jf]] m[il4js,c12js]"

Click "Compile" (create AEXP compiler)

Select Code "c01ajs. demo, AEXP compile assignments ¢[i02a,c12js]"

Click "Compare Code and Output" It does compare, so cOlajs = c[i02a,c12js].
Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i01. demo, AEXP example assignments"

Click "Compile" (use AEXP on demo assignments)

Select Code "c00. demo, compiled assignments c[i01,c01]"

Click "Compare Code and Output" It does compare, so i02a can do the old demo.

SCYXNANR WD =
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Now lets test the new relational operators by adding assignments to the end of i01 to make i0la below:

fern: =5+6;

ace: =fern*5;

wal do: =f er n+al pha/ - bet a*gamms;

f er n: =5<=6;

ace: =f er n*5>=bob;

wal do: =f er n<- al pha<=bet a- >ganms,;

Now try compiling these new operators.

1. Select Input "i01a. demo, AEXP2 backup value assignments"
2. Select Code "c01ajs. demo, AEXP compile assignments c[i02a,c12js]"
3. Click "Compile" (use AEXP on demo assignments)

The compile reports the syntax error "f er n: =5<<scan>=6; ". Why was there a syntax error? It is because the Rx1
alternative ' <’ RX2 . OQUT(.TB 'It' .NL) / was tested before the ' <= RX2 .QUT(.TB 'le' .NL) / alternative.
The literal string ' <' was matched and the RX2 next in the sequence failed to match = forcing a syntax error. We
could reorder the alternatives of RX1 as follows to solve this problem by checking for the larger literal string first.

RX1 = RX2 (‘=" RX2 .OUT(.TB 'eq .NL) /
"<=' RX2 .OUT(.TB 'le'" .NL) /
">=' RX2 .OUT(.TB 'ge' .NL) /
"< RX2 .OUT(.TB 'It' .NL) /
"> RX2 .OUT(.TB 'gt' .NL) /
. EMPTY)

Alternatively we could factor the definitions of RX1 as follows.

RX1 = RX2 ('=' RX2 .OUT(.TB 'eq .NL) /
< (= RX2 .OUT(.TB 'le' .NL) /
.EMPTY RX2 .OUT(.TB "It' .NL) ) /
rso(r = RX2 .OUT(.TB 'ge' .NL) /
.EMPTY RX2 .OUT(.TB "gt' .NL) ) /
.EMPTY)

Note that the above definition would allow whitespace between the two character relational operators (e.g., A < =
B) and that may or may not be desirable. It depends on the specification of the language you are implementing or
designing.

Let's try out one of the above RX1 definitions.

Select Input "i02a. demo, AEXP example assignment compiler"

Copy one of the above RX1 definitions and paste it over the i02a RX1 definition
Select Code "c12js. use comments, c[il4js,c[i14js,c12jf]] m[il4js,c12js]"
Click "Compile" (create AEXP compiler)

Click the Output "Copy to Code" button and Output "Clear" button

Select Input "i01a. demo, AEXP2 backup value assignments"

Click "Compile" (use AEXP on demo assignments)

Nk L=

Once again the compile reports a syntax error but this time it is on a different source line

"wal do: =f er n<- al pha<=bet a- <scan>>gamma; ". So our rewrite of RX1 worked but there is more work to do. What
caused this syntax error? The rule EX2 recognized the literal string ' -' as subtraction when we really wanted the
literal string ' - >' to be recognized as a right shift in rule EX0. We want the precedence of the 'right shift' operator
'->' to be lower precedence than the 'subtraction' operator ' -' but higher precedence than the 'less than' relational
operator ' <=' . These precedence relations enforce that wal do: =f er n<- al pha<=bet a- >ganma means

wal do: =(f er n<- al pha) <=( bet a- >ganma) Can we use cither reorder or factor to eliminate the problem while
maintaining the precedence relationships? We can't.

Further we've introduced a problem in the syntax itself. The statement f er n<- al pha compiled without error as f ern
left shifted by al pha but it could also mean f er n<( - al pha) . In fact since unary minus is the highest precedence
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operator one would think the second might be the preferred choice. This is an ambiguous syntax and is best avoided
by careful language design.

To solve this problem we need to relax the meaning of a sequence inside of an alternation. This means we need
some syntax construct that in certain cases allows a sequence to scan some input and fail to recognize the rest of the
sequence but not fail with a syntax error. This is called backup parsing because it requires the parser to backup in
the input string to the place when the failed sequence started. In fact the whole state of the compiler (e.g., input
position, output position, token buffer, and margin) needs to be restored.

Step 13.1 Define new syntax for backtracking

We will be modifying i14js to make 115js. We are going to change the syntax of rule EX3 from

EX3 =ID/ STRING/ "('" EXL '")" [/ ".EMPTY" / ".LITCHR / '$ EX3 ;
to
EX3 =ID/ STRING/ "(" EX®1')" [/ '".EMPTY' [ '.LITCHR /[
".PASS / '$ EX3/ '[' EX1 $( '|' EX1) ']' ;
The meaning of the syntax construct[ A | B | ... | Z ] isas follows:

1. If A succeeds, then the syntax construct succeeds.
2. If Afails,then B | ... | Z is the value of the syntax construct.
3. If A causes a syntax error, then
the input position backs up to the point where A started
the output position backs up to the point where A started
the token buffer backs up to the value it had when A started
4. the margin backs up to the value it had when A started
5.B| ... | z isattempted to be recognized
4. If all of the alternatives fail or cause a syntax error, then everything is backed up to when A started and the
construct fails.

W=

This syntax construct will allow us an easy rewrite the AEXP compiler of i02a into the AEXP2 of i02b. The rewrite
of the rules RX1 and EX1 are shown below:

RX1 = RX2 ['=' RX2 .OUT(.TB 'eq .NL)
"< RX2 .OUT(.TB 'It' .NL)
"> RX2 .OUT(.TB 'gt' .NL)
"<=' RX2 .OUT(.TB 'le'" .NL)
">=' RX2 .OUT(.TB 'ge' .NL)
. EMPTY]

EX1

EX2 $['+ EX2 .OUT(.TB 'add .NL) |
"ot EX2 .OUT(.TB 'sub' .NL) ]

Notice that the rewrite of these two rules does nothing to remove the ambiguous syntax syntax problem. The code
al pha<- 5 will be assigned the meaning al pha shifted left by 5. It is a very poor syntax.

Step 13.2 Implementation of backtracking

The backup positions are kept on the stack and in the implementation presented below cannot be nested in a single
rule. The pf | ag parse flag continues to indicate the success of the parse. A new ef | ag error flag is defined to
indicate the presence of a syntax error. The alternation of EX1, the sequence of EX2, the iteration of EX3, and the
backtrack of Ex3, all must consider the ef | ag in their flow of control. The backtrack requires new runtime functions
that set the backtrack point (bkset ), restore the backtrack point (bkr est or e), and clear the backtrack point

(bkcl ear).

Below are the major i15js changes to the 114js JavaScript object definition.
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[ parsing expressions ]
EX2 $('/' .QUT("if ((!'this.pflag) & (!this.eflag)) {' .LM- .NL)
EX2

EX1

EX2

EX3

Step 13.3 Build the compiler and use backtracking

RN R WD =

b

10.
11.
12.
13.

. OUT(

LM

Pt oOND) )

(EX3 .aur('if (this.pflag) {'
QUTPUT . QUT('if (true) {'

.OUT("while (!this.eflag) {'
$(EX3 .OUT("if

OUTPUT)
. OUT(. LM
. OUT(. LM

I D

$C I

"1 .QUT("if (this.eflag) this.bkrestore() ;'

" break }'

oy

. QUT(
. OUT(
. OUT(
. OUT(

. OUT(
. oUT(
. OUT(
. OUT(

('this.pflag) this.bkerr();"
.OQUT("if (this.eflag) break ;'

. NL)

NL)

"this.
"this.
"this.
"this.

"this.
"this.
"this.
"this.

ct xpush(’
0
ctxpop() ;'

rule'

test ('

pfl ag
t oken

i np++ ;'
inp =0 ;'
"this.pflag = true ;'

.OUT(' this.bkclear() ;'

Select Input "i15js. js metacompiler with backup"

CLMF LNL) /
JLMF L NL) )
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. NL)

. NL)

this.inbuf.charCodeAt(this.inp) ;' .NL)

"while (this.pflag & !'this.eflag) {' .LM- .NL)
}it LM LNL)
"this.pflag = 'this.eflag ;'
"this.bkset() ;' .NL)
LOUT('if (!'this.pflag)
.QUT("if (this.eflag) this.bkrestore() ;' .NL)
EX1
COUT(.LM "} ;' UNL) )
.NL)

Select Code "c12js. use comments, c[il4js,c[i14js,c12jf]] m[il4js,c12js]"

Click "Compile" (create stepping stone compiler)

Click the Output "Copy to Code" button and Output "Clear" button

Click "Compile" (create new metacompiler)

Select Code "c13js. accept backup c[i15js,c[i15js,c12js]], m[i15js,c13js]"
Click "Compare Code and Output" It does compare, so c13js = c[il5js,c[i15js,c12js]].
Select Input "i02b. demo, AEXP2 backup assignment compiler"

Click "Compile" (create AEXP2 compiler)

Select Code "c01bjs. demo, AEXP2 assignments compiler c[i02b,c13js]"
Click "Compare Code and Output" It does compare, so cO1bjs = ¢[i102b,c13js].
Select Input "i01a. demo, AEXP2 backup value assignments"

Click "Compile" (use AEXP2 on demo assignments)

This time the i01a extended demo assignments compiled as they should. You can verify that the original i01 demo
assignments also compile as they should.

Step 13.4 Embedding the compiler in a web page

The c13js compiler made in the previous step is wholly contained and may be cut off the page and directly pasted in
the an html web page. Its capabilities may be greatly expanded by simply defining syntax and generating code that
connects to all the resources available to JavaScript in the browser.

The simple JavaScript code we have used on these web pages to control the generated object compilers is given
below. The JavaScript function St art JsObj Conpi | e is connected to the "Compile" button. The JavaScript code
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St ar t JsObj Conpi | e calls JsObj Conpi | eError Report if an error occurs to provide the available error information.
It uses the function Char CodeSt ri ng to ensure that unprintable characters are shown as their codes. Below is a
minimal web page needing your JavaScript object compiler pasted at the location indicated.

<HTM_L><HEAD><TI TLE>Runni ng Your Conpiler on a Wb Page</ Tl TLE></ HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<SCRI PT LANGUAGE="JavaScri pt" TYPE="text/javascript">

/1 paste your generated conpiler here

function StartJsObj Conpil e()

{

/1 assunes "conpiler" defined above is a js object

/1 clear the output textbox

docunent . Conpi | eFor m Qut put Text.value ="' ;

/1 run the conpiler on the input textbox

conpi | er. conpi | e(docunent. Conpi | eFor m | nput Text . val ue) ;
/1 set the output even if there is an error

docunent . Conpi | eFor m Qut put Text . val ue = conpil er. out buf ;
/[l if there was a conpiler error, then report it

if (conpiler.eflag > 0) w ndow. al ert (JsCbj Conpi | eErrorReport(conpiler))
wi ndow. confirnm(' Done.");

}
function JsQbj Conpi | eErrorReport (conpiler) {
var i ; var j ; var h ; var ctx ; var error;

/1 conpilation error, provide error context
error = "ERROR \n' +
"RULE:' + conpiler.erule + '"\n" +
"TOKEN. ' + conpiler.token + '"\n" ;
/1 provide input scan context

i = conpiler.einput - 20 ; if (i <0) i =0 ;
j = compiler.einput + 20 ; if (j > conpiler.inbuf.length) j = conpiler.inbuf.length ;
ctx = conpiler.inbuf.substring(i,conpiler.einput) +

'<scan>' +

conpi |l er. i nbuf.substring(conpiler.einput,j) ;

error += 'INPUT TEXT:\n' + ctx + '\n" +

"I NPUT CHAR CODES:\n' + CharCodeString(ctx) + '\n' ;
/'l provide output context
i = conpiler.outbuf.length - 30 ; if (i <0) i =0 ;
j = conpiler.outbuf.length ;
ctx = conpiler.outbuf.substring(i,j) ;
error += 'QUTPUT TEXT:\n' + ctx + "\n'" +

" QUTPUT CHAR CODES:\n' + Char CodeString(ctx) + '"\n'
return error

b

function CharCodeString (s) {
var ccs ; var h ;
/1 ensure nonprinting character codes are visible in error nmessages
ccs ="'
for (var h =0 ; h < s.length ; h++)
{ if (s.charCodeAt(h) <= 32)
{ ccs += '<' + s.charCodeAt(h) + '>" ; }
el se
{ ccs += s.charAt(h) ; }
P

return ccs ;

}
function C earQutput() {docunent. Conpil eForm Qut put Text.value ="" ; }

</ SCRI PT>

<FORM NAME=" Conpi | eFor M ACTI ON="none" >

<I NPUT TYPE="button" NAME="Conpi |l eButton" VALUE="Conpil e"
onClick="StartJsObj Compile();">

<I NPUT TYPE="button" NAME="Cut put C earButton" VALUE="C ear"
onCick="C earQutput();">

<BR>

<TEXTAREA NAME="I| nput Text" COLS=80 ROW5=2000>

I nput text shows here.

</ TEXTAREA>

<TEXTAREA NAME="Cut put Text" COLS=80 ROA5=2000>
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On conpil e out put appears here.
</ TEXTAREA>

</ FORM>

</ BODY>

</ HTM.>

Step 14. Closing thecircle

http://www.bayfronttechnologies.com/mc_tutorial.html]

We used Meta II to boot the c13js series metacompiler through the steps of this tutorial. It only seems fair to return
the favor. Way back on Step 3 we were kind of coy about saying where the c02 implentation of Meta II came from.
The input i104a below is 103 (Meta II with top-down rules) written for the ¢12* series or better metacompiler - as it

does not require backup added in the c13js metacompiler. We've basically had to add explicit formatting (ie.,

.LB, .NL) and defined the tokens.
. SYNTAX PROGRAM

PROGRAM = ' . SYNTAX D .OUT(.LB .TB 'ADR ' * .NL)
'SB.ELD LOUT(.TB 'END .NL) ;

ST =ID.OQUT(.LB * .NL) '=" EXL'.,' .OUT(.TB'R .NL)

EXL = EX2 $('/' .OUT(.TB 'BT L' # .NL) EX2 )

LOUT(.LB 'L'# .NL) ;

EX2 = (EX3 .OUT(.TB 'BF L' # .NL) / OUTPUT)
$(EX3 .OUT(.TB 'BE .NL) / OUTPUT)
LOUT(.LB 'L'# .NL) ;

EX3 = ID LOUT(.TB 'CLL '* .NL) /

STRING  .OUT(.TB 'TST '* .NL) /
"D LOUT(.TB 'ID .NL) /

" NUMBER .OUT(.TB'NUM .NL) /

" STRING .OUT(.TB 'SR .NL) /

(" EXL ') /

" EMPTY .OUT(.TB 'SET" .NL) /

"$' .OUT(.LB 'L'# .NL) EX3 .OUT(.TB 'BT L' # .NL) .OUT(.TB 'SET' .NL)

QUTPUT = ('.OUT" '('$OUTL ')" /
" LABEL' .OQUT(.TB 'LB .NL) OUT1)
LOUT(.TB 'OUT' .NL) ;

QUTL = '*1' LOUT(.TB 'GNI' .NL) /
txp LOUT(.TB 'G\2' . NL) /
LQUT(.TB'Cl' .NL)  /

STRING .OUT(.TB 'CL '* .NL)
. TOKENS

PREFI X : $. ANY(32!/9!13!10) ;

I D : PREFI X . TOKEN ALPHA $(ALPHA/DIG T) .DELTXK ;

NUMBER : PREFIX .TOKEN DIG T $DIG T . DELTCK ;

STRING : PREFI X . TOKEN . ANY(39) $. ANYBUT(13!10!39) .ANY(39) .DELTXK ;
ALPHA : _ANY('A'Zl'a:'z) ;

DGAT : .ANY('0:'9) ;

. END

So let's build this new metacompiler through a stepping stone.

Select Input "i04a. Meta II syntax (i03 reordered and tokens)"

Select Code "c12js. use comments, c[il4js,c[i14js,c12jf]] m[il4js,c12js]"
Click "Compile"

Click the Output "Copy to Code" button and Output "Clear" button
Select Input "i03. Meta II syntax (paper fig. 5)"

Click "Compile"

Select Code "c02. Meta II of fig. 5, c[i03,c02]"

Click "Compare Code and Output" It does compare

PRI R WD =
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So a c12* metacompiler can recreate Meta Il by recognizing it's original syntax thus giving us our final equality.
1. ¢02 =m[i03,c02] = ¢[i03,c03] = c[i03,c[104a,c12*]]

Graphically this equality represents a directed arc from c12* all the way back to c02 Meta II at the very beginning.
Thus, the graph is not rooted and highly cyclic.

We presented a framework for embedding generated JavaScript object compilers in a single simple html page. We

are please to demonstrate this here with META II: A Syntax-Oriented Compiler Writing Language which contains
c[i04a,c12*] and provides "i03. Meta II syntax (paper fig. 5)" as the default input. Clicking "Compile" on that page
can produce the pseudo assembly for META II missing from the original paper [Schorre64].

Step 15. Benefits and drawbacks

In terms of the original "dragon book" of compiler theory Principles of Compiler Design [Aho77] the compilers we
have presented here perform recursive-descent parsing with syntax directed translation. The first part, the parser, is
the recognition of the syntax. The second part, the translator, is the code generation. A parser without backup (our
series ¢02 to c12) is a top-down recursive-descent parser. A parser with backup (our series c13) is a top-down
backtracking recursive-descent parser .

Step 15.1 List of drawbacks of thistechnique

Aho & Ullman [Aho77, pg. 177] lists the following drawbacks in using these kinds of parsers. We also relate each
issue to where it was demonstrated in this tutorial.

1. left-recursive grammar - "A left-recursive grammar can cause a top-down parser to go into an infinite loop."
Below we show the left recursive grammar of example 5.13 from [Aho77, pg. 178]. (The letters used in (5.8)
below are from the Algol 60 report standing for Expression, Term, and Factor.) It implements addition +,
multiplication *, and precedence () over an identifier. The equivalent input in the Meta II language is also
shown.

\(5.8) of example5.13\ (5.8) in Metall

E->E+T| T E=E'+ T/ T.,
T->T*F|F T=T'* F/ F.,
F->(E)|id |[F='( E') [/ .ID.,

Yes Meta Il will generate an infinite recursion for this syntax. (You can check this by cutting the Meta II
above and pasting it into the rules for i02 and compiling with c02.) The simple symptom of left recursion
(ignoring backtracking) is a parse rule being invoked at the same input position where it was last invoked. The
example eliminates immediate |eft recursion (recursion from a rule to itself) to arrive at the solution (5.9)
below. Where "¢" in (5.9) is the Greek epsilon meaning empty.

(5.9) of example5.13 (5.9) in Metall | Metall

E >TFE E =TEl .,

E ->+TE | ¢ [El='+ TEL/ .EMPTY ., [E=T$('+ T)

T ->FT T =FTL., T=FS3$(* F

T >* FT | ¢ TL ='*" FT1/ .EMPTY ., [F="'(" E")" [ 1D
F ->(E)|id |[F ='(C E'Y |/ .ID.,

In the third column above we also show the usual way this grammar would be implemented in Meta II using
iteration with recursion rather than just recursion. Notice that Meta II "$(' +' T) " notation is a compact
iterative version of the "E1 = '+ T E1 / .EMPTY ., " recursive version. Recognizing left-recursion in the
above examples is easy. It becomes more difficult when multiple rules are involved (e.g., rule A calls B calls C
calls A). However [Aho77, pg. 179] informs us that "It is possible, although difficult, to eliminate all
left-recursion from any grammar."

2. backtracking - "If we make a sequence of erroneous expansions and subsequently discover a mismatch, we
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may have to undo the semantic effects ... undoing semantic actions requires substantial overhead."

We saw this in step 13 where the context had to be expanded to save the state of the compiler. In particular all
the information saved by the bkset and restored by the bkr est or e JavaScript function (i.e., input position,
output position, and token buffer).

. language definition - "with top-down backtracking parsers the order in which alternatives are tried can affect

the language accepted."
We saw this in step 13 where the relational operator " <" was tested before the "<=" operator.

. error reporting - "when failure is reported, we have very little idea where the error actually occurred."

The idea here is that if a backtracking parser just keeps backtracking, then on an input containing a syntax
error the parser just keeps backtracking through all parse rules until it returns to the top rule where with all
alternatives tried it just says "syntax error" pointing to the beginning of the input string.

Step 15.2 Drawback solutionswith thistechnique

In this section we will discuss some of the common solutions to each of drawbacks listed above.

1. left-recursive grammar - The symptom of a left-recursion infinite loop is that a rule is called twice on the

same input position. This is detectable. In fact semantics could be created to fail the rule if left-recursion is
detected. Under these semantics even (5.8) above will work with Meta II. Most of the time this just isn't
necessary.

. backtracking - This drawback is in essence an efficiency argument on parsing ("requires substantial

overhead"). Further as discussed in the "error reporting" section below the authors may be viewing
backtracking as the implementation of all alternatives (i.e., all alternatives backtrack or all do not). In step 13
we implemented backtracking alternation in addition to non-backtracking alternation. This way it only need be
used where the language designer deems necessary. Where it isn't necessary no context need be saved. We
showed an example where backtracking was necessary in the form of i02b with the rather poor syntax choice
of <- and - > for the shift operators. These definitions not only required backtracking but also introduced an
ambiguous syntax.

. language definition - "with top-down backtracking parsers the order in which alternatives are tried can affect

the language accepted."

We saw this in step 13 where the relational operator " <" was tested before the " <=" operator. The usual
solution to this problem is to just order the alternatives with the longest literal string first. It doesn't seem to be
much of a problem in practice. In the relational operator example we really didn't need to add backtracking to
the RX1 rule of 102b because of the "<=" issue as either version in the table below works without backtracking.
We needed to add the backtracking to the RX1 rule of i102b because a higher precedence " <- " shift operator
conflicted with the "<" relational operator.

ordered alternativesrule |eft-factored rule
RX1 = RX2 ("= RX2 .OUT(.TB 'eq’ .NL) / |RX1L = RX2 (' =' RX2 .OUT(.TB 'eq" .NL) /
"<=' RX2 .OUT(.TB 'le" .NL) / <= RX2 .QUT(.TB 'le'" .NL) /
">=' RX2 .OUT(.TB 'ge' .NL) / .EMPTY RX2 .QUT(.TB "It .NL) ) /
"< RX2 .OUT(.TB'It" .NL) / >t RX2 .OUT(.TB 'ge' .NL) /
"> RX2 .OUT(.TB 'gt' .NL) / .EMPTY RX2 .QUT(.TB "gt' .NL) ) /
. EMPTY) . EMPTY)

We also pointed out that one of the left-factored rule allows a space between the characters of the "<="
operator and the ordered alternatives rule does not. Aho & Ullman [Aho77, pg. 177] seem to be concerned
that the commutative property of EBNF alternatives is not somehow represented in the implementation of the
parser because the alternatives are tried in order. I believe it's more of a concern that each parser for a
language parses the language the the same way. As parser generators generate tables based on tokens
described by a separate lexer the real question is do all of these table parsing schemes provide the same parse?
How would we know? Look at the configuration and version space: 1)lexer 2)table generator 3)table
interpreter. Each of which are contained in separate specification.
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4. error reporting - "when failure is reported, we have very little idea where the error actually occurred."
The idea here is that if a backtracking parser just keeps backtracking, then on an input containing a syntax
error the parser just keeps backtracking through all parse rules until it returns to the top rule where will all
alternatives tried it just says "syntax error" pointing to the beginning of the input string. As stated this seems
to presume a single alternation implementation with full backtracking. In step 13 this is not what we
implemented. In fact it's rather ironic that backtracking would be cited as a problem in error recovery when in
practice a form of it is used to implement error reporting. As an example the following replacement and
additions to 115js would print out the name of all parse and token rules containing a syntax error. The two
token rules PBODY and TBODY are defined to skip over the body of a parse rule or token rule. This is a very
primitive error reporting based on backtracking. Usually error reporting is implemented using a different
construct similar to backtracking which taps into the syntax error reporting routine (e.g., c13js bkerr function)
to find the furthest parse position and rule calling the error to format a detailed error message.

PROGRAM = ' . SYNTAX' |ID
LOUT(.LB "/t
.OUT(' conpiler =

" conpiler' .NL)
{* LM+ .NL .NL)

PREAVBLE
$([PR| ID.OUT("error: ' * .NL) PBODY] / COMVENT)
" TOKENS'
$([TR| ID.OUT("error: ' * .NL) TBODY] / COMVENT)
" END
POSTAVBLE
LOUT(. LM '} AL
PBODY : .TOKEN $(STRING / .ANYBUT(''!':)) .ANY(';) .DELTOK;
TBODY : .TOKEN $(.ANYBUT(''!':) / .ANY('') .ANY(0:127)) .ANY(';) .DELTOK;

In a later version of the "dragon book" [Aho86] the techniques discussed in this tutorial have been moved towards
the front of the book probably in recognition that most parsing and compiling is done using them. Still many
well-known language compilers (such as C, C++, java, etc.) are built using the table driven parser techniques. It's up
to each developer to decide whether the benefits of this technique outweigh the drawbacks for a particular compiling
problem.

Step 15.3 Extensions

In this step we suggest some future extensions for your metacompiler that others have found useful.

1. reserved words - A construct such as . RESERVED(' i f* 'then' 'repeat' 'while') added to parse rule TX3
of i15js that fails if the token buffer contains any of the reserved words in the construct. Useful to prevent
reserved words being used as identifiers if that is desired.

2. iteration limits- A modification to the interation constructs of parse rules EX3 and TX3 of i15js such as
$<1: 10> that fails if the iterator is successful too few or too many times. Useful to prevent identifiers from
being too long or control constructs too empty such as a block with no statements. Usually augmented with an
upper limit ability to allow unlimited (e.g.,$<1: *>.)

3. error recovery - A construct such as [[ rulel ] rule2 ] added to rule EX3 of i15js that is an error trap. If any
errors occur in rulel then the compiler backtracks to the entry state of the construct and rule2 is invoked to
skip over a logical section containg the syntax error. The square brackets are used to indicate its similarity to
parser backtracking. Error recovery is differentiated from backtracking in order to provide better error
messages and error counts.

4. named counters- A construct such as #Name added to rule EX3 of i15js that implements named integer
counters. The counters need operations to change them ranging from simple increment and decrement to an
implentation along the lines of the AEXP arithmetic assignments example of Step 3. Also these counters can
be used in the OUT1 rule just as the # generated unique numbers are accepted. As an example the above error
recovery extension rule2 might increment a counter named #ERRORS.

5. string buffers - Similar to named counters, string buffers are a construct such as * Name added to rule EX3 of
i15js. Buffers are strings and as with the counters may be assigned values from the token buffer and other
buffers. Also as with counters they may be used in the OUT1 rule just as the token buffer * string is accepted.
As an example the above error recovery mechanism might set a buffer named * ERRORTOKEN to indicate the

41 of 45 9/5/2008 7:54 PM



Tutorial: Metacompilers Part 1

10.

token buffer at the point of error and * ERRORLI NE to provide the furthest progress into a source line.

. input redirection - A construct such as . | NCLUDE( filename) that redirects the input to the given file until it is

exhausted. The filename is specified using OUT1 rule constructs. The file and position may have to be restored
on a backtrack depending on where this construct is allowed.

. output redirection - A construct such as . CON or . FI LE that is similar to the QUTPUT rule construct . OUT that

directs output messages to the user console or a file.

. symbol table - Constructs for keeping and finding information during a compilation that uses and sets string

buffers, named counters, and literal string constants to keep track of and query information. As mentioned in
Step 15. Benefits and drawbacks backtracks may have to roll back this information. The easiest way to start is
just use a linear list of entries in memory. The roll back then just needs to restore the maximum index into the
symbol table.

. database connection - Constructs for cross-module compilation that contains the symbol table information

from other compilations or interfaces that will be linked with this compilation. As an example many of the
resources used by compilers are from operating system shared files. Under MS Windows these are Dynamic
Link Library (.DLL) files or under Unix/Linux Shared Object (.so0) files. On a successful compile the
information can be updated with the public information for the compiled module. The easiest way to start is
just use a sorted file of fields indexed by the module name and load it into memory.

tree generation - Rather than generate text output directly as we have done in this tutorial we could have
generated trees for futher processing [Carr69]. As an example we could write a tree oriented AEXP compiler
as

. SYNTAX AEXP

AEXP = .LIST(stnts AS $AS) ;
AS = .ID ::address ':=" EX1 :store[2] ';' ;

EX1 = EX2 $('+ EX2 :add[2] /
'-' EX2 :sub[2] ) ;
EX2 = EX3 $('*' EX3 :npy[2] /
/' EX3 :div[2] )
EX3 = EX4 $(' N EX3 :exp[2]) ;
EX4 = '+ EX5/ '-' EX5 :mnus[1l] / EX5 ;
EX5 = .1D ::value /
. NUMBER : : number /
"(" EX1 ')' :parens[1]
. END

The easiest way to start is keep a tree node stack in memory where nodes are pushed onto the stack. Each tree
node has a name and data. The three node forms used above are:
1. token nodes - such as : : addr ess above which pushes a node named "address" containing the token
buffer string data on the node stack.
2. treenodes - such as : st or e[ 2] above which pushes a node named "store" on the stack containing two
pointers to the second node on node stack and top of node stack in that order.
3. list nodes - a construct such as . LI ST(stnts AS $AS) above which
1. pushes a special list marker node containing the st nt s node name
2. evaluates the AS $AS which push other nodes
3. pushes a single node with the node name st nt s found in the list marker with data array
containing pointers to all the nodes down to the list marker, removes the nodes down to the list
marker, and removes the list marker
The use of pointers above is stressed as they provide an efficient way for tree construction to interact with the
needs of backtracking. On backtracking tree constructions need to be rolled back. Two major reasons for
generating trees are optimization and separating code generation from the parser. Notice the above AEXP
description works for all implementations because the code generation has been removed. Once the code
generation has been removed the same generated tree can be the source for generating code for various
platforms (including hardware and software mixes), simulations, diagrams, and reports.
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A lot of the above extensions need much more discussion to become clear. They are just presented here as things to

think about at the end of this first tutorial.
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Step 16. Sour ce for the metacompiler workshop

The Metacompiler Workshop page mc workshop.html consists of five subpages each in a frame. The links to the
subpages are below so you can view the page source if your browser does not allow viewing the source of a frame.

1. mc_title.html is the top frame and is just text.

2. mc_input.html is the left input frame. It is computer generated and contains just quoted versions of the various
inputs of the input selection drop down box.

3. mc code.html is the center code frame. Also computer generated it is similar to the input frame and contains
just quoted versions of the various codes of the code selection drop down box.

4. mc_output.html is the right output frame. It implements the "Copy to Code" and "Clear" buttons.

5. mc_semantics.html is the bottom frame. It is where all the real work happens. It implements the "Compile",
"Compare Code and Output" and "Extract Syntax to Output" buttons. In this frame

o input text is parent . franes[ 1] . document . | nput For m | nput Text . val ue

o code text is parent . frames[ 2] . docunent . CodeFor m CodeText . val ue

o output text is par ent . f r ames[ 3] . docunent . Qut put For m Qut put Text . val ue

o The "Extract Syntax to Output" button simply invokes the fully contained JavaScript compiler
c[i16,c13js] saved as synt ax_extract through the St art Ext r act Synt ax on the input and places the
result in the output.

o The "Compare Code and Output" button calls the hand written function St art Conpar e to compare the
code and output text.

o The "Compile" button calls the hand written function St art Conpi | e that determines which of the three
compiler implementation models (i.e., Meta II interpreter, JavaScript functions, or JavaScript object) is
contained in the code text.

m Meta II interpreter model calls St art | nt Conpi | e.

m JavaScript function model evaluates the code text to define the functions and calls
St ar t JsFnConpi | e which presumes a function named conpi | er was defined.

m JavaScript object model evaluates the code text to define the object and calls St art JsObj Conpi | e
which presumes an object named conpi | er was defined and it defines a conpi | e method.

The HTML source has been validated by W3C Validator as "Valid HTML 4.01 Frameset" for mc_workshop.html
and "Valid HTML 4.01 Transitional" for all the others.

m~ HTML ~ HTML ~ HTML ~ HTML ~ HTML m HTML
-~ 4.01 -~ 4.01 -~ 4.01 ~ 4.01 ~ 4.01 ~ 4.01

mc_workshop mc_title mc_input mc_code mc_output  mc_semantics

Click on any of the icons above to validate them for yourself.

In general the Meta II interpreter model and JavaScript function model share the same runtime routines. The three
models demonstrate the three primary models of code generation [Bell73].

1. interpreter (Meta II interpreter model) where the text or a code representation (bytecode) of the text is
interpreted by an interpreter loop to create a series of calls to a runtime library.

2. threaded code (JavaScript function model) where the compiler primarily outputs calls to a language runtime
library that is linked with the code.

3. compiled code (JavaScript object model) where the compiler primarily outputs executable code with minimal
calls to a linked runtime library.

If all the heavy work is done in the runtime library, then the efficiency of these different code models is not all that
different. However if a majority of the work is done in compiled code (i.e., the inner loop) then compiled code is
much more efficient. You can see it in this tutorial. The Meta I pseudo assembly interpreter is the slowest. While
the threaded code JavaScript function model and compiled code JavaScript object model are fairly close in speed.
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Step 17. Conclusions and pragmatics

The tools that you use to solve a particular problem always depend on the problem. Metacompilers are not the
answer to everything but sometimes they can be very helpful. It's up to the artisan to pick the right set of tools for
the job. Metacompilers are just another available tool.

If you are faced with the task of scanning or translating a language such as C or C++, then using a table driven
parser generator (e.g., Lex/Yacc) may be your best bet. Especially if there is a readily available grammar. However
if you need only a cursory scan or just interface information or the input language is very simple then they might be
a bit cumbersome. The metcompilers work well in that case. I used them to collect source data on millions of lines
of source code reported in "Finding Reusable Software Components in Large Systems".

If you have a rich source of semantics (e.g., a lot of library routines you can call which perform domain-specific
operations such as calls to a game engine or elaborate hardware) then the metacompilers make it easy for you to
build language interfaces to these semantics. In this case where the strong semantics are large grain and efficiently
written there is very little difference in efficiency between the interpreter, threaded code, and compiled code models
discussed in Step 16. This is because all the heavy work is done in the semantic routines. Hence a lot of games
contain scripting languages for extending an existing game or writing a completely new game. The metacompilers
are good at this where embedding a parsing table generator would be cumbersome. The point again is to choose the
tool for the problem at hand.

As I was writing this tutorial I found myself speculating about what happened to metacompiler technology; what
drove compiler theory; and how has the world changed since ASCII? Some of my speculations are shared below:

1. A lot of the parsing issues we discussed might be interlinked with the character set. If there is a Unicode
character code for each of a language's operators so that the operators are not strings drawn from a limited set
of symbols, how much of a problem is this parsing? As an example we might use the actual Unicode symbol
for "<" rather than the low-level string combination "<=". The ambiguous grammar problem we had using
"<-"and "->" for left and right shift could easily be solved by using the single symbols "«" and "»". The
mathematicians are completely un-shy about using single symbols for meaning. Perhaps the computer
scientists should join them in this view. Programming languages at this level have been around for over fifty
years. Perhaps it's time we advanced from making "puzzle book" general-purpose languages.

2. Compiler theory started as graph analysis driven by the Chomsky hierarchy. In particular most computer
languages are Type-2 context free grammars consisting of:

1. terminal symbols (scanned input)

2. nonterminal symbols (rule names)

3. productions (rules) of the form nonterminal goes to a string consisting of terminals and nonterminals
You can see this in the input definitions we've used. However the concept of a metacompiler as a compiler
generator that is capable of reproducing itself from a high-level domain specific description really never fit
well into this original defining framework of recognition systems. Even if we adopt simplistic definitions of
"high-level" as the input being smaller than the output and "domain-specific" as the input syntax and output
concepts being wholly contained independent of implementation, then we are still dealing with concepts
outside of the scope of this defining framework. Did failing to fit into the prevailing framework of the day
cause these concepts not to be investigated well during the rise of compiler theory?

3. Many modern computer languages seem to bloat up, become a syntatic mess of low-level symbols, and then
die. Is this because of the magnificent job the formal compiler theorists did in creating table driven
context-free parsers? Could this be just a variant of the old addage "Any knife sharp enough to help you is
sharp enough to cut you?"

I wrote this tutorial because the techniques of metacompilers and the flavor of using them seems to have gotten lost
somehow. They changed my thinking a long time ago (e.g., of course programs write programs). They were and are
a key technique for stepping onto or between new hardware. As we face massive multi-core systems with complex
programmable peripherials such as networking, graphics, and sound I thought metacompilers were worth explaining.
Hopefully building small embeddable languages to program these devices now doesn't seem so daunting.
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Thanks for slogging through this tutorial. I hope you enjoyed it as much as I enjoyed revisiting this old friend.
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