MODULE INTERCONNECTIOR LANGUAGES

a ok o o o bty r{:mw.

BUBEN PRIETO-DIAZ
JAMES M. NEIGHBORS

December 1983

Department of Information and Computer Science
University of California Irvine

Irvine, CA 92717
Copyright (C)} 1983 Ruben Prieto-Disz,James M. Neighbors

This work was supported by the U.S, National Science Foumdation under Grant
MCS-81-03718 and by the Comsejo Naciomal de Ciencia y Tecmologfa (CONACYT),
MEXICO. ‘ _ .

¥

14 December 1983 Table of Contents

Table of Contents

1. INTRODUCTIION

1.1 Current Research

2. MIL CONCEPTS AND IDEAS

3. MODULE INTERCONNECTION LANGUAGES
3.1 MIL?5

3.2 THOMAS” MIL

3.3 Cooprider”s MIL

3.4 INTERCOL

4., SYSTEMS SUPPORTING MODULE INYERCONNECTION
4.1 m -

4,2 CLU

4.3 ADAPT | ey b
4.4 MESA _ A&m? p@}mﬁi wfﬁwfpﬁ

4.5 PROTEL =
4.6 CDL2 Yot W
4.7 SARA

4.8 GANDALF

4.9 TOOL SUPPORT FOR INTERCONNECTIOHN
5. CONCLUSION

6. FUTURE RESEARCH

ACKEOWLEDGMENTS

EEEBENRRUNBEBIRow~

L n
FE

14 December

Figure
Pigure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
FPigure

2=1:
3=1:
3-2:
3-3:

1983 List of Figures

List of Figures

MIL Description of a Module

Graphic View of MIL Evolution

Graphical System Tree for a One—pass Compiler
The Module Intercomnection Structure

Partial Code of a MIL75 Program

t . Example of Code for Thomas” MIL

A Definitions Module and an Implementor in MESA Taken from
[Geschke et.al. 77]

A Partial Configuration Description in C/MESA Taken from
[Geschke et.al. 77]

Modular Structure jin CDL2

Some Tools Supporting Module Interconnectlon

[o)
s

13
17

18
21
38

39

&85

14 December 1983 INTRODUCTION 1

1. IRTRODUCTION

DeRemer and Kron developed the first Module Interconsection Language
[DeRemer & Kron 76]; MIL7S. They established the basic ideas and concepts of
module intercomnection by arguing convimcingly about the differences between
programming-in-the-small for which typical programming languages are used to
write modulea and prqgraming-in—the-large for which a module intercomnection

language is required for "initting“ those modules together.

Three MILs [Thomas 76], {Cooprider 79], and [Tichy 80] were developed
after MIL75 each' one adding new ideas and features to MIL75 but, essentially
based on DeBemer and Kron“s original concepts. Thomss developed a module
interconnection notation and discussed a possible wmodule 'intéfcomection
processor, Cooprider expanded the basic ideas of MIL75 to introduce a version
control facility and a software control facility, and Tichy developed INTERCOL,
a MIL that integrates some of Cooprider”s features with control of system

families and with asynéhronous compilation of modules.

There ex_ist s;averal languages, software development tools, and operating
systems. that in ome way or another provide module interconnection mechanisms.
To describe every tool, system or methodology that supports some kind of module
interconnection is beyond the scope of th.is paper. Hence, the scope of this
paper is to survey the languages that are specifically designed to support
module intercomnection and that are called Module Intercomnection Languages
(MILs) and to include brief descriptions of some modularization techniques and

tools that support module intercommection to provide a frame of reference and a

basis for comparison.

The goal of this survey is to acquaint the reader familiar with the problems

14 December 1983 INTRODUCTION) _ 2

of programming and maintaining large software systems with a class of tools .

designed to describe how a large system “fits together". 1In particular we will
focus on MILs designed only to specify the structure of a system rather tham its
béhavior as is important in system modelling. We will largely not deal with how
the MILs perform their functions in order to treat the issue of what they do in
more . detail. The interested reader will find more detail in the referenced

literature.

Work in this area can be traced back to the early 1960s when the.first large
software systéms like 08/360 started to create very difficult problems not only
to their system programmers but to their ajstem designers and project managers
as well, The basic design principle used then was that of "divide and conquer”.,
Divide the system into modules by the process of system design. Then program the
modulea, validate each module and, ass;;ble all modules to integrgte a complete
system. This basic design primciple is still the primary design technique used

today.

The crux of the problem is -t.he module assembly (integration) part of a
complete system. It requires manual inspection of module interfaces in order to
gu#raﬁtee perfect module bonding. MILs alleviate this problem by providing
certain language constructs differenmt from regular programming languages, that
succeed in representing the various module interconnection specifications

required to assemble a conpléte software system,

A MIL can be considered a structural design language because it states what
the system modules are and how they fit together to implement the system”s
function. This is architectural design information. MILs are not concerned with

what the system does (specification information), how the wmajor parts of the

14 December 1983 INTRODUCTION 3

system are embedded into the organization (analysis information), or how the

individual modules implement their function (detailed design informatiom).

While the major payoff of using a MIL may seem to be during the system designm
phase of the software~lifecycle the actual payoff is during system integration,
evolution and maintepance. This is because the MIL specification of a system
constitutes a written down description of the system design which must be
adhered to before a version of the system may be c;nstructed. A maintenance
programmey cannot violate the system design without'explicitly modifying the

system design.

1.1 Current Research

- Current research in module intercomnection can be observed from three
different but complementary perspectives: The Software Engiuéering Perspective,
the Formal Models Perspective and, the Artificial Intelligence Perspective. The
basic question in module intercomnection is: given a collection of agents
(modules) each of which performs a certain functiom under certain circumstances,

how can these agents be combined to perform a more complex function?

Researchers in Software Engineering view the problem as a design problem and
approach the problem from the point of view of finding a design notation which
can capture tﬁe complete design of a system as stated explicitly by a system
 designer. MILs are design notations resulting from this point of wview. The
system designer is thought of as "coding” in design notatioms. A MIL
description of a system is mechanically checked for consistency and completeness

before the system is actuvally linked together.

Researchers working in Formal Models view intercomnection in two ways: as a

structural model of the resource usage of the system during execution and as a

14 December 1983 IRTRODUCTION A

consistency model of the comstruction of the system. The resource model is
intended to determine the data loading of diff-erent parts of the system ar..td to
detect any communications deadlocks which might occur. The SARA system [Campos &
Estrin 78a] [Campos & Estrin 78b] has adopted this structural modelling as one
of its main goals. A system consistency model captures the constraints on using
different v-ersions or implementations of individual modules compbsed of other
modules. Given these formal constraints and the modules which must be
implemented, a consistency model ‘detemines a collection of specific versions
and implementations of modules whicﬁ can be shown to implement the

system [Neighbors 80].

For the Artificial Intelligence researcher the intérconnection problem
manifests iﬁself as a problem in automatic programming. In this context
"knowledge about programming® or "knowledge about the problem domain" can
represent both constraint and implementation information. The problem becomes
one of using this kﬁowledge base to arrive at a sequence of low-level steps
which implement a high-level specificatiom. This search for an acceptable series
of steps is guided by a description of the problem to be solved (goal), hints
about a series of steps which might suffice for a given goal (plan), and which
plans are potentially useful in differemt circumstances (frame). The goals,

plans and frames are all a part of the knowledge base. These mechaniswms must

make sure that the steps that they link together are compatible and this is the .

intercounection problem. The Transformational Implementation system [Balzer,
Goldman & Wile 76] and the Programmer”s Apprentice system [Rich, Schrobe &

Waters 79] are two systems which take this approach.

‘The point of view taken in this survey is that of the Software Engineering

14 December 1983 INTRODUCTION | 5

perspective. The point of view of the other two perspectives is very important
and deserves a complete in depth study for each. Since each of these views is
dealing with similar intercommection information it is important that a
researcher taking oue perspective understand the other perspectives by the

information they manipulate and the operatioms they provide.

14 December 1983 MIL CONCEPTS AND IDEAS 6

2, umi CONCEPIS AND IDEAS

Modularity is a well ;stablished concept that has been used in engineering
and managerial disciplines for many years to break the work of a big pfoject up
into controllable units. In both of these. approaches, the details of the
division have not been very inportant.. In the design of a software sysE:
however, the splitting up is crucial. It mist be dome so as to ninimizé,_to
order, and to make explicit the comnectiom between the modules. Moreover, if'éhe
aim is a testable and validated system, systém connectivity must be

substantially reduced.

There are no rules om how to do this, but some helpful methodological
guidelines have been developed. The keynote behind these guidelines is that of

hierarchical ordering as a technique to control complexity [Newell et.al. 61].

Other technique having hierarchical ordering as its aim is the idea of
“successive abstraction™ [Dijkstra 65], where the idea of the divide and -

conquer approach to characterize top-down design and the principle of

non-jnterference were introduced.

The main idea in these early wo;ks is that of separating the behavior of the
program at omne level from the details of each of the compoments thus reducing
the complexity of the programming problem. Each of the aubproérams can then be
considered in turn, in isolation from each other and from the program skeletom

in which they are embedded.

Some of these ideas go as far back as the concept of mathematical function or
even to earlier times and an exhaustive historical search of these ideas is

beyond the scope of this paper.

N e

Ll

14 December 1983 MIL CONCEPTS AND IDEAS 7

Even though the key word "modularization" or "module" did not become widely
used until the early seventies, the original work or structured programming and
hierarchical system decomposition provided the conceptual background for the

development of Module Interconnection Languages (MILs) of the late Seventies.

MILs are based on the effective separation between Pr.ogrming-in-the-large
(PL) and Programing-iu-the-ml:l (PS). PS is concerned Qith building.ptograms
and lu.as been greatly developed to include the new techniques of structured
pfogrming, top-down design, stepwise refinmement, and others. Many of the
widely accepted languages (ALGOL, PASCAL, COBOL, etc.) have been designed to
aid programming-in-the-small and have contributed towards making programming a
science [Gries 81]l. The system lifecycle phases of detailed design and
implementation primarily use PS notations. These notations focus om how a

particular part (module) of a system performs its funmction.

PL on the other hand, is concerned with building systems. PL notations are
primarily used in the architectural design phase of system comstruction and
concentrate on how the system modules cooperate (through calls and data sharing)
and what functions each module provides. A language concerned with the data aud
coﬂtrol' flow intercomnections between a collection of modules we will refer to
as a Language for Programming in the Large (LPL). A MIL is an LPL with a formal
machine-processable syntax (i.e. not natural language or graphical diagram)
which provides a means for the designer of a large system to represent the

overall system structure in a concise, precise, and verifiable form.

MILs are very effective but limited tools to aid during the software
life-cycle. A system must be evaluated, analyzed, and designed first by means of

current methods and techniques. Once a system structure is determined, it may

14 December 1983 MIL CONCEPTS AND IDEAS 8

be coded in a MIL to be checked and verified for completeness and
inconsistencies. A separate MIL code must be maintained during implementation
and then wused for high level maintenance during system operation and

enhancement.
Lo’

The main concepts of MILs coﬁzh be listed as:

1. The idea of a separate language to describe system design.

2. To be able to perform static type-checking at an intermodule level of
description. .

3. To consolidate design and comstruction process (module assembly) in a
single description. :

4. Capability to control different versions snd families of a system.

A MIL usually serves as a Project Management Togl by encouraging structuring
before starting to program the details and as a Support tool for the design

process by capturing overall program structure and being capable of verifying
-~ 1,

system integrity before design implementatiom)begins. A MIL could also provide

some means of standardizing communicatjon among members of a programming team
and of standardizing documentation of system structure. The significant support
to these activities as seen from the Software Engineering perspective, is what

makes MILs an important tool for the software development process.

Example

In a MIL deseription, Jave considered objects that become the
& N i

currency of exchange among modules. Resources are any entity that can be named

in a programming language {e.g. variables, constants, procedures, type

definitions, etc.) and which can actually be made available for reference by

another module within a given software system.

All resources are ultimately provided by modules, thus modules are umits that

“.
& +

.‘ »

14 December 1983 > ! . MIL CONCEPTS AND IDEAS 9

Y
provide resqpfé:s and that require some set of resources. The syntax primitives
of a MIL describe the flog of resources among modules; they are provide (which
may also be called synthesize or export) and require (whick may also be called
inherit or import). Has-access=to is another syntax primitive that helps to
provide proper module structure within a system. A must attribute may also

precede the above primitives.

An-example of a MIL description of a module is shown in figure 2-1 below.

Note that declarations such as module, functiom, and consist—of are also part of

the MIL syntax.

module ABC
provides a,b,c
requires x,y
consist-of function XA, module YBC

function XA
must-provide a
Trequires x
has-access~to module Z
real x, integer a '
end XA
module YBC
mugt-provide b,c
requires a,y
real y, integer a,b,c
end YBC
end ABC ‘
4: MIL source code b: Graphical representation

Figure 2-1: MIL Description of a Module

The MIL description of a module specifies the resources required and provided
- by the module and becomes the interface with other modules and suﬁsystqns.
Module descriptions are the actual code of a MIL and are used when assembling or

integrating a software system in order to verify system integrity.

-

14 December 1983 . MIL CONCEPTS AND IDEAS | 10

In most of the module interconnection schemes we shall examine, the PL
information is in the form of a MIL and the PS information is in the form of a
noml programming language. The packaging of this information differs between
different schemes. At one side of the spectrum a system is defined as a
collection of modules each of which coﬁtains MIL and PS information and there is
no central description of the system other than the list of modules which
compose it. At the other end of the spectrum the modules which compose the
system coutain orly PS information while the central description. of the system
contains all the MIL information for each module and the intercomnections in the
system. In both cases it makes sense to Ycompile" the MIL definition of a system
to see if the interfaces between it”s constituent parts match. No programming
language (PS level) information is necessary to perform this compilation.
¥What MILs Dom’t Do
There are scme functions that are not comsidered to belong to the domain of
MILs. These functions were stated by DeRemer and Kron [DeRemer & Kron 76] and
by Thomas [Thomas 76] in order to make a clear distinction between a MIL and
other tools or languages performing similar functioms related to wmodule
interconnection. With this separation of functions the above authors intended to
state the "universe of discourse” of MILs establishing the basis upon which

newer MILs should be built.

The functions a MIL should not attempt are:

1, Loading: A MIL should leave this functiom to a "subsystem loading
language” or to other facilities within the software development
enviromment. .~

[¥.alh
2, Functional’Specificatjon: A MIL only shows the static structure of a -

software-and should not specify the nature of its resources. This
task should be assigned to other subsystems.

3. Iype Specification: A MIL is concerned with showing and verifying the

14 December 1983 MIL CONCEPTS AND IDEAS 11

different paths of communication among modules within a software
system by means of named resources. Some of these resources may be <
types but the naming of these types is what a MIL looks for, not
their specification. For example, the decision to declare real ¥y in
& program is a design decision that follows a type specification
while real y in a MIL code acts as a type checking statement only.

4. Embedded Link-edit Imstructions: These operatioms should be left for
another subsystem within the development enviromment such as the
operating system or a separate command language.

The current tendenéy in MIL development, is to keep the domain of MILs well
defined so that stand-alone MILs can be developed and then integrated as part of

a software development emviromment such as in GANDALF [Haberman, et.al. 81].

Approaches such as C/MESA of the MESA System [Lauer & Satterthwaite 79] and
External Structure of ADAPT [Archibald 81] conform to the current temdemcy but
are not as general since they are restricted to modules coded in a single

programming language.

Hohern programming eunviromments provide tools that support module
interconnectior along with version control mechanisms and other software
development aids (i.e. PWB, MESA, CDL2, CANDALF etc.) Some of the module
interconnection tools integrated in these systems are implementations of MILs
(i.e. MESA“s C/MESA, SARA”s MIC, GANDALF’s INTERCOL, DREAM”s DDN)} while others

are collections of specialized tools (i.e. PWB, PROTEL, CDL2).

14 December 1983 MODULE INTERCONNECTION LANGUAGES 12

- 3. MODULE INTERCONNECTION LANGUAGES
There are four stand-alonme MILs developed to date and reported in the
literature: MIL75 [DeBemer & Kron 761, Thomas” MIL [Thomas 761, Cooprider”s

MIL [Cooprider 79], and INTERCOL ([Tichy 79).

strong modular language origin with a tendency' to use software engineering
techniques. The a@i MILs alti:ough sharing the same origims with their
predecessors go further by integrating techniques from software engineering and
tools from powerful operating systems. The graph represents the citations made
by papers in the different areas at the giﬁen times and serves to show that the

problem addressed by MILs are not confined to a single area.

DeRemer and Kron developed the first Module Interconnection Language
[DeRemer & Kron 76]; MIL75. They established the basic ideas and concepts of
module intercommection. MIL75 is a language for programming-in-the-large (LPL)
that gives the systems designer a tool to desigm and, to a certai; extent, build
a complete system out of modu1e§ that do not have to bg completely coded and
tested, just properly specified. For each module.the designer must specify the
re#ources provided and required.. The type of the resocurces must also be
specified. Details about the internal operations of the modules are mnot
- 75
1 these specifications while doirg consistency mie .

\J.M*-

checking resulting in an accurate recording of the overall solution structure. ngﬁiaumqﬁw

Y i+

required. MIL?S /coiipiles
. e

Thomas [Thomas 76], developed a module intercomnection notation and discussed
a possible module interconnection processor. He proposes a formal model based
on the separation of compiling, binding and linking that allows for flexible

bindings and also provides the notation to incorporate his MIL into a

14 December 1983 MODULE INTERCONNECTION LANGUAGES 13

programming system. Besides the flexible binding scheme which is his main
contribution to MILs, Thomas presents through his fofmal model the basis for

practical MIL implementations.,

Cooprider [Cooprider 79], expands the basic ideas of the previous MILs to
introduce a version control facility and a software comstruction facility. The
former facility recognizes the different instantiations (versions)} of am
interconnection network and knows how they are hierarchically integrated while
the latter facility is capable of constructing a complete software system from a
functional description of the construction process, Resources and source files
are combined according to comstruction rules, explicitly specified by the

designer, to create the objects that form a software system.

His major contribution to MILs is to discard the use of a compiler and to use
instead a data base processor (similar to the system described in [Bratman &

Court 75]) supporting an interactive system construction enviromment.

INTERCOL was developed by Tichy in 1979 ([Tichy 79] and {Tichy 80]). 1In
addition to the features of Cooprider”s MIL, INTERCOL supports asynchronous ’LZ‘
é;._.#———
compilation of modules and/or subsystems, and control of system families.
.
INTERCOL is intended to be an integrated software development and maintenance
enviromment that supports communication and cooperation among programmers.

GANDALF has integrated INTERCOL as its tool for system version description and

generation.

14 December 1983 MODULE INTERCONNECTION LANGUAGES e 14
design techniques fJ‘"JJ\

=" 8ystem

modularity ° o-

y —_ : SOFTWARE
h;.grarch::al stepwise i\ﬁfomn on fanlies ENGINEERING
abstraction refinement fhiding

MILs

PROGRAMMING
LANGUAGES
MESA system
C/MESA '
OPERATING
JCL/0S MULTICS UNIX SYSTEMS

— el & — UNIX/PWB

r |
Fyso—tr5ss— 37— *1975 1980

Figure 3~1: Graphic View of MIL Evolution

3.1 MIL75

. MIL75 is based on the concept that any system structure has a graphical
representation :i.ﬁ the form of an inverted tree with nodes being the modules and
the edges their different hierarchical relationships. This graphical
relationship of a system is an implicit prerequisite to use MIL75. The methods
proposed in [Stevens, et,al 74] and in [Yourdom & Coustantine 79] for
structured design could be used to obtaim the hierarchically decomposed inverted
tree representation of a system as required by MIL75, provided some additionms

are included to represent module accessibility as well as the resources required

- and provided.

Once a graphical structure for a system is obtained, it is programmed in
MIL75 where the code comsists of the description of the modules in each node.

The code is compiled to verify system integrity and to enhance reliability.

s
Y ‘“”h
G

14 December 1983 MODULE INTERCONNECTION LANGUAGES 15

Each "system description” can be recompiled alome or with any others. When

“systems descriptions" are put together they define a "module interconnection

structure”,

MIL75 consists of three sets that are required to establish system structure:

1. Resgurces- Atomic elements which denote abstractions of pProgramming
coustructs within a program (variables, types, arrays, functions,
etc.) and are available for reference to other modules.

2, Modules~ Programming units made up of resources and other programming
constructs that perform a specified function or task,

»

3. Systems~ Groups of hierarchically organized modules that communicate
via resources to perform more elaborate functions.

MIL75 establishes certain relatipnships between resources and modules as ﬁhe
basis to keep system structure, integrity and maintainability within control.
These relationships are based around the inverted tree model described above and
form the minimum set required by MIL?5 to be able to do module interconnection.
The relationships are:

l. Defining the scope of definitions of module or subgystem names thus
helping to impose the overall system structure called here the
"system tree". This external scope definition is accomplished by the
systems designer and the description of each node (module or
subsystem) is writtem in MIL75 code. Thus this relationship is among
modules. Figure 3-2 below shows a system tree for a one-pass
compiler. :

2. The relationship between modules and their provided and derived

resources. This relationship is represented by a "Resource Augmented f:“ﬁr*‘L

Tree" which is a system tree that also indicates the resources
provided and derived for each node pursuing a top—down approach. This
tree shows only the flow of resources from paremt to children and up
from children to parent, the latter being called "derived resocurces".
Resources origimated in other nodes not being direct ancestors or
successors are not considered "provided" nor "“derived" but rather
"accessed” resources.

3. The relationship among the resources of sibling modules. The
channels for flow of resources among siblings are determined by the
parent, These accessibility channels or links smong a set of
siblings may form any directed graph. Access rights are not
transitive and also the children of a node are invisible to its
siblings. This relationship limits resource accessibility to modules

ey
asd B0
ﬁ»b%i***‘LL'

3- &

14 December 1983 MODULE INTERCONNECTION LANGUAGES

symtble ' @

ED @D @D G

N ngu:ex3—2° Graphical System Tree for a One-pass Compiler

4.

5.

laying at the same hierarchica evel.

The relatiomship of accessibility of resources G} modules at
different hierarchical levels. On the one hand a child inherits by
default all access rights that have been granted to its pareamt but a
parent may deny some subset of its access rights to any of its
children. The parent however, must explicitly list all access rights
left to a “partially disinherited" child. On the other hand a parenmt
has access to the resources that it demands from any of its children
but these rights cannot be transmitted to the next level down because
its grandchildren and lower descendants are invisible to the parent.

The relationship between modules and the origin and wusage of

resources. For each module, a MIL75 program must include two
statements:

a. The "statement of origin" listing the resources defined in that
module and,

b. The "statement of wusage" listing separately the derived
resources provided by its childrem, and all other resources,
those obtained through siblings or inherited access.

16

14 December 1983 MODULE INTERCONNECTION LANGUAGES 17

Establishing relationships 1 through 5 is what MIL75 coding is all about. A

ready-to-compile code must describe the "access augmeﬁted system tree" which ia
shown as part of Figure 3-3 below.

‘-
LK
/
v \ Y

P
P i t \ \
’ y
Gextehas RN
\ b
“ -

’ ‘--
[\
!

)
¢
rF
F
- /
S \""---‘
! \ S~ i
; Y DT

4 N

) N
ity

System Tree
Accessibility
Provided Reaources
Used Resources

Figure 3-3: The Module Interconmnection Structure
2

F)
; 2

After these relationships have been established (coded) by the system

-
designer, the HILT%:E%%§§§§i>CheCks that actual usage of resources by a given

module agree to access rights provided by other modules to those resources and
that provided resources either come from a child or are defined within that

module. Passing that stage, the compiler then establishes the usage links which

14 December 1983 . MODULE INTERCONRECTION LANGUAGES 18
are direct channels where resources will flow.

A usage link is illustrated as follows: if a module m has access to a
resource provided by a module p them a usage link is established to point to m
from p. In other words, it is solving indirect references by direct links which —
in short corresponds to binding (at compile time). This binding is what
establishes the "module intercomnection structure™ shown in Figure 3-3, For this
exampLe the access augmented system tree mentioned above is identical to the
module interconmnection structure of Fig. 3-3 except for the usage links. In
short, a complete MIL7S program consists of a series of statements expressing
the differeat relationships (1,...,5 above) between resources and modules of a

structured (nodal) representation of a system,

The partial code of the MIL75 program for the module intercommection

structure shown is given in figure 3-4 below.
system compile
author John Smith
date 2/25/82
provides compiler
consists of
root module
originates compiler
subsystem scan
must provide scanner
has access to symtble
consists of
toot module
originates scanner
uses derived

Figure 3-4: Partial Code of a MIL75 Program

Differences from the Other MILs

MIL75 is oriented around a structured (oriented tree) representation of a
system thus shifting some of the' work back to the systems designer. The MIL

compiler takes (in MIL75 code) the complete description of the system where

14 December 1983 MODULE INTERCONNECTION LANGUAGES : 19

design decisions like proper abstraction, functional decomposition, and

moduiarization have already been made by the systems designer. Furthermore the

systems designer must establish the accessibility and provision of resources

among modules.

The main cgutribution of MIL75 to the field of softw;re systems de;ign is in
providing the designer with some means of detectiﬁg wrong design decisions
before construction begins. If the MIL75 compiler'&etects an error, it may be an
error reflecting a bad modularization of the system or simply am incomsistency
on the flow of resources. In the later case, the fix is relatively easy and
requires the recompilation of ome or few modules and/or subasystems while in the

former case a recompilation of the complete system may be required.

The majo; drawback of MIL75 is its rigidity csused by its attachment to the
" inverted tree structﬁre. Thomas (next section), tried to overcome this
deficiency by designing his MIL around a more flexible. structure. Anéther
deficiency in MIL75 is its lack of support for the "specification of the
funcfion of the modules". DeRemer and Kron also mention the capability a MIL
should have to support modules programmed in distinct languages but they do not
show such capability for MIL75. Last but not least, MIL75 could be seen as an
isolated tool used omly to show how a MIL should work but was not integrated
into a software development enviromment. Thomas instea&, tried to establish the
mechanisms to integrate his MIL into a programming system. This integration is
_ required, as Cooprider [Cooprider 79] amd Tichy [Tichy 80] later did, in order
to use and evaluate their MILS,

Experience to Date

MIL75 was implemented in an academic environment to test the concepts of module

2z

14 December 1983 MODULE INTERCONNECTION LANGUAGES - 20

interconnection but was never used in a production enviromment nor integrated

into a software development systen

3.2 THOMAS® MIL
The objective in Themas” thesis is to propose a MIL that would be a
complement to

for the future deve oent of MILs.

L4

Thomas” MIL is based on the idea that module intercommection should be
flexible and not constrained to a particular system structure as in MIL7S. He
advocates the "compiling and static type-checking before binding/linking” scheme

and claims to obtain more flexibility, less recompilation, and moderate cost

because of the composition of binding and linking iato a single phase.

This scheme allows a software system to be represented (in MIL code) as a
"finite directed graph G with no simple cycles and where 8 is a start pode in G
and all nodes in G are reachable from 8". This graph definition is the same as
the inverted tree representatioﬁ of a software system used by MIL75 with the
addition @ Thomas proves that static checking will not be affected by
the addition of the c¢ycles but that binding may become an intractable problem in
some cases. His proof is based in the fact that binding requires for each node
besides a name, a directory of the resources {required and provided) for each
context upor which that node may be used by other modules. This list of
directories may be infinite if- partially recursive functions are present
(cycles). Expensive dynamic linkage must be used for these cases instead. Of
course Thomas obtains intercomnection flexibility by going from a pure oriented
tree structure of a system to an oriented tree with cycles at the price of

sometimes not being able to do the binding.

{3

14 December 1983 MODULE INTERCONNECTION LANGUAGES 21

The "universe of discourse" of Thomas” MIL is pames which are mainly of four
classes: Resources, Modules, Nodes, and Subsystems.

~ Resougrges are the class of names within a module which can actually be
made available for reference,

- Modules are wunits of source code (may be written in different
programming languages) providing and requiring resources. The
definitions of resources and modules are almost identical to the ones
given in MIL75,

~ Nodes are descriptive units (in MIL code) that establish enviromments
for the modules by binding rescurce names to modules. Nodes are the
basic entity for programming in the large just as a module deseription
is im MIL75. So a node specifies the set of modules attached to it
aud the interconnection between the node and other nodes of the
system.

There are four main operations a2 node can apply on resources to form
the MIL code:

1. Synthesize- specifies a set of resources provided by a module.
2. Inberit- specifies a set of resources required by a node

3. Generate-Locally- specifies which modules are attached to the
node being defined.

These operators are equivalent to provide, has-access~to, and
consist—-of of MIL75 reapectively.

4, Has-successor- determines the set of nodes that provide
resources to this node or in MIL75 terms, the successors are the
children of a node that generate "derived" resources to their
parent,

~ Subsystems are graphs (directed) of nodes and the edges conmecting
them with one mwnode (the "distinguished node") providing a
characterization of the subsystem i.e. indicates resources provided
and required for the whole subsystem. A subsystem is stored in a
library structure and ca eferenced in a MIL program as if it was
a single node.

In [Prieto-Diaz 82 €te syntax description and examples of this MIL are
presented for further reference. Figure 3-5 below shows a piece of code for this
MIL to illustrate the use of the unames defined above and how they describe a

structure.

14 December 1983 MODULE INTERCONNECTION LANGUAGES 22

node compile
synthesizes proc compilex
has successors scan, parse, symtble, postfix
BUCCessOr scan
synthesizes proc scammer
must inherit proc symbol table
Successor parse
synthesizes proc parser
mst inherit proc scannmer
proc¢ postfix
successor symthbl
must synthesize cluster sytable with ops enter, retrieve
generates locally proc lookup using search
successor postfix
synthesizes proc postfixgen
proe quadruplesgen
mzst inherit proc symbol table

Figure 3-5: Example of Code for Thomas” MIL

If a user were to design a software system using Thomas” MIL as a development

tool, a structured design methodoiogy should be followed to obtaiﬁ a oriented
Itree structure of the system just like the "system tree" of MIL75 is obtaimed.
The user would then define the nodes in MIL comstructs by carefully analyzing
which modules could Be encapsulated in a subsystem so that s node structure is
obtained which describes the whole system structure im a LPL. This is analogous
to the “packaging" activity of'stkuctured design [Page~Jones 80]. This is a more
flexible way to build the rigid "resource augmented" and "access augmented"

system trees of MIL7S.

During the formation of the node structure, static type checking would be
performed by the MIL processor so that at the end resource flow consistency

would be verified,

The next step, in contrast with MIL75, would be to code the individual
modules and compile each one separately. Finally, the MIL processor would be

called to do the binding and perform the required module intercomnections, that

14 December 1983 MODULE INTERCONNECTION LANGUAGES 3

is to change all indirect referemces to direct comnections. The MIL75 compiler
instead establishes the ™usage links" (bindings) at a LPL level without need for

module coding.

Difference from the Other MILs

As seen in the above description, Thomas” MIL performs the module
interconnection after module compilatiom thus allowing more flexibility to the
designer at the type-check stage but at the same time forcing the complete

termination of the system (coding) before intercomnection can be performed. The
=

pay-off is during maintemance whem individual modules can be added withou@

T

requiring full recompilation of the system as MIL75 would @i@;uire.
This pay-off will be incremented if the MIL were integrated into a system .

development enviromment as 8 proposes. Thomas” MIL is restricted in two

ways: 1) by using urces and constructs and 2) by bounding the
intercomnectior to the compile/link paradigm. Cooprider and Tichy succeed in
freeing their MILs from these restrictions and in integrating their MILs in

working systems development emvironments as will be shown below.

Experience to Date

Thomas work is only a discussion of a possible MIL processor and it was never
implemented. It is however a valuable work that established certain ideas for

future MILs.

3.3 Cooprider”’s MIL

The objective in Cooprider”s work [Cooprider 79] is to propose a system that
to some extent, would bridge the gap betweer software design and software
construction. He develops a representation for software systems that integrates

a MIL, & version control facility and a software comstruction facility. His

14 December 1983 MODULE INTERCONNECTION LANGUAGES 24

emphasis is on the later two facilities but succeeds in adding some innovations

to the work of DeRemer & Kron and Thomas.

There are three levels of notation in this MIL, The highest, most abstract
level defines the interconnection between subsystems or modules. The
intermediate level describes instantiations of system versions conforming to
those intercomnection- structures. And the lowest, most concrete levgl describes

actual system construction operations.

The Interconnection System

The abstract portion of the subsystem interconnection notation corresponds to
the one used in the previous MILs. The suybsystem or module is the basic building
block; resources are the curremcy of exchange among subsystems. Subsystems may

enclose other subsystems. Resources must be named explicitly and can be "extra

linguistic", that is, they are not necessarily made of programming comstructs

There are three intercounection mechanisms in this MIL:

l. Kesting~ The provider can be mested directly within a requirer. This
mechanism is similar to the flow of resources from children to parent
in the resource augmented tree of MIL7S.

2, Explicit Reference— The provider can be nemed by an external clause
in the requirer. This case ia aralogous to the accessibility channels
for resources among sibling modules of MIL7S.

3. Environment Definition- The provider can be named by a subsystem that
encloses the requiring subsystem. This mechanism is the same
enviromment described in Thomas” MIL and similar to the flow of
resources from parent to children in the resource augmented tree of
MIL7S,

The Construction System

14 December 1983 MODULE INTERCONNECTION LANGUAGES 25.

This lowest, most conecrete level of notation is presented before the

intermediate level in order to convey better understanding of the whole

language. The objective here is to specify the process by which a system is
constructed. concrete objects, xules, and processors are required for the
construction to take place. A rule shows how a concrete object is constructed, a
concrete object is a generalized file (scurce, object or executable code) and a
processor is aﬁy program that produces a concrete object (compiler, assembler,
text processor, etc..}. A source file is always the origiral c;ucrete object in

a chain of construction rules.

There are three operators used in the construction system:

1. file- Used to point to a specific file name indicated by a path (full
directory path) enclosed in "< >" brackets., This path may be empty
thus showing the file pame omly. '

2. acquire- converts a resource from another subsystem intc a concrete
object,

3. deferred- retrieves all objects that have been implicitly associated
vith the parameter object. This operator is used when separately

compiled subroutine bodies are linked and their external procedure
declarations made effective.

The example below illustrates the use of the sbove operators.
Example
concrete object filel = FOR(file(<DIR-name:MAIN>))
concrete object COMM = FOR(acquire(COMMON~BLK))
concrete object file2 = FOR(file(source-SORT))
councrete object file3 = MERGE(file(inputl),file(input2))

concrete object execMAIN =~ LINK(filel, file2, file3, COMM,
deferred(file2))

The Version Contyxol System

The objective of this system is to make different system versions share the
same interconnection structure so that duplication of identical information is

prevented and modification sites are centralized. This approach is better than

14 December 1983 MODULE INTERCONNECTION LANGUAGES 26

copying system descriptions that would require hodificatiohs to each copy for

any small alteration performed to a component subsystem.

The syntax for this system consists of two parts: the realization section and
the versjon section. The realization section contains all the information
pertiﬁeﬁt to the tangible form of a subsystem while 2 version is an
instantiation of a subsystem or a group of such instantiations. There are
several combinations of the syntactic comstructs that can be used to describe a
subsystem realization. The example below shows a subsystem with several
versions.

Exawple
subsystem HASH provides HashFunétion
realization
version Quick _
version Fortran resources file(<FortranQuickHash>)end Fortran
version Pascal resources file(<PascalQuickHash>)end Pascal
version Algol resources file(<AlgolQuickHash>)end Algol
end Quick
version Careful '
version Fortran resources file(<FortranCarefulHash>)endFortran
version Pascal resources file(<PascalCarefulHash>)end Pascal
version Algol resources file(<AlgolCarefulHash>)end Algol

eand Careful
end HASE

In contrast with the two previous MILs, the language developed by Cooprider
) S _
could be seen as an extended MIL that alsc supports system comstruction EEE;BEL
/s -
system design. If a user were to design and comstruct a software system using
thié MIL as a development tool, a similar process would be followed as if using
MIL?5 or Thomas” MIL, that is, a structured design methodology. This process

would be, in contrast with the previous MILs, carried on interactively with the

aid of a data base where system integrity would be verified.

With this tool, construction information could also be specified and verified

14 December 1983 MODULE INTERCONNECTION LANGUAGES 27

during the design phase so that the end product would not be only a structured
system design but also a structured description of what steps to follow to
obtain such a system. Module coding could be done separately and/or in parallel

with the whole system design.

The largest gain in using Cooprider’s system would be by far\,l\ during the
evolution of the software product throughout its entire operational life.

Differences from the Other MILs

It is difficult to compare Cooprider’s MIL against the previous two because
of its language extensions. The module intercommection part of this tool could

be considered as a synthesis of both, MIL75 and Thomas” MIL. That is, most of

. /‘/-"_“———.___\-_.’_‘*/’/—\-«—\ ey e s .
their advantages were integrated in this MIL “such as flexibility in the
e TN .

. . e N " - LT b
- lnterconnection structure, easy syntax and notation, and static binding. The

flow of resources however, has similar restrictions as inm MIL75 but not as
stringent. A subsystem here only provides and requires resources in a way
similar to scope rules in structured programming languages while in a module in
MIL75, derived and ac¢ccessed resources must also be specified depending if they
flow among parent-offspring or amomg siblings respectively. This reduction in
the complexity of resource flow is due to the use of a data base processor
instead of a compiler. This is the major contribution of this MIL. The data
base processor is also a key factor for the implementation of the comstruction

and version control systems.

A drawback of the construction mechanism is that the data base has no
knowledge of the nature of the various versions. Therefore the realizatiom
description requires excessive detail and the designer must give explicit

construction rules for all compoments and configurations as well as program.all

14 December 1983 MODULE INTERCONRNECTION LANGUAGES 28

the modification policies by hand. Moreover the data base processor does not
support comtrol for concurrent actions (i.e. two programmers modifying the same
file at the same time.)

Experienceg to Date

Several parts of this system have been implemented. The implemented
components were tested in a laboratory enviromment with a specific and small

test case: A software support for a scan line graphics printer. They have not

a

been proved in a real production enviromment. There is no report of a consistent
version of the system as proposed but many of the ideas and some of the
components have been used in the development of the System Gemerator Facility of

the GANDALF System [Haberman, et.al. 81].

3.4 INTERCOL
The goal of Tichy“s work at the software development enviromment level

envisions three objectives:

1. A Module Interconnection Language (INTERCOL) capable of Tepresenting
multiple versions and configurations written in multiple programming
languages.

2. An Interface Control System that automatically verifies interface
consistency among separately developed software compomrents.

3. A Version Coatrol System similar to the ome proposed by Cooprider
[Cooprider 79] but with the advantage that in this case the system
determines which version of which component should be combined to
form a particular version of a particular configuration instead of
relying on a detailed set of construction commands issued by the
designer as in Cooprider”s MIL.
A description in INTERCOL is a sequence of module and system families
followed by a set of compositions, A member of a module family is a version of a

wmodule, and a member of a system family is a version of a system. The former may

be one of a set of different module implementations for different emvirooments

14 December 1983 MODULE INTERCONNECTION LANGUAGES WE’ 29
: o

or in different languages, or may be one of a set of differemt module reﬁ'gions, (l

or can also be a derived yersion. The latter may be a member of a set of

different system configuratjons or of a different derived gomposition.

Each ocne of the above families has an interface. An interface consists of
programmed entities called rpesources. A resource in INTERCOL has the same
meaning as a resource in the previous MILs; they are the units of flow among
modules and/or among systems. All members of a particular module or system
family use ‘the same interface so that free substitﬁtion of family members can
occur. This is the -main reason, in contrast with previous MILs, that INTERCOL

makes every interface explicit.

INTERCOL interacts with a number of different programming languages by means
of a resource-specification sublanguage. Resources are comstructs in a specific
programming language that are implemented and used in the modules. Thus a

mapping from resource specification sublanguage is installation dependent, but

the language must be statically typed. The sublanguage used by Tichy in his work _

is a subset of the Ada language.

A resource declaration in INTERCOL may comsist of a compact representation or
a specification or both. A compact representation is an abbreviated list of
resources and their attributes (type, access, etc.) snd a specification is a

list of resources written in the resource specificationm sublanguage.

A module family has an interface consisting of a list of provided and
Iequired resources and contains ome or more implementations. Each implementation
may exist in several revisions which are the entities or files that contain the

-

actual programs. Different programming languages can be used for different

14 December 1983 MODULE INTERCONNECTION LANGUAGES .30

realizations. Each realization may have several revisions, where a revision is
the result of programming the initial revisior or editing am existing one.

Derived versions constitute a second dimension of variation of trealizations.

A system family comtains zero or more module and system families and zero or
more compositions. A composition gives a name to a combination of elements that
are the names of previously declared building blocks in the same or enclosing

system families.

The construction process of a software system followed by a user of INTERCOL
would be almost identical to the process described.for a user of Cooprider”s
MIL. INTERCOL however, is imbedded in a “Software Development Control Facility"
(SDCF) which is organized as an interactive system that controls a software

development data base. SDCF moreover, allows for separate and incremental

N

(asynchronous) compilation of modules, and independent type checking thus
—— __---._-___.'—

significantly reducing development costs.

The advantage of using Tichy“s SDCF over the previous MILs is at the level of
controling the evolutiomary process of a software system. The approach of system
design by "evolving prototypes" would be the ideal approach to use with this

SDCF.

Differences from the Other MILs

The most significant contributions of INTERCOL and Tichy”s SDCF to MILs are:

1. Allows a structured specification and control of families of systems
which enclose families of modules.

2. Allows separate- and asynchronous compilations of modules and
independent type checking.

3. Includes an interface control system that automatically manages the
consistency of the interconnection among module and system families.

14 December 1983 MODULE INTERCONNECTION LANGUAGES) _ a1

4. Includes a versior control system that supervise the addition of new
versions.

Experience to Date

Tichy”s SDCF is operationsl at the prototype level in a PDP 11/40 system
under UNIX and has been integrated into the GANDALF System [Haberman, et.al.
81] as the System Version Description facility. There has been mno reports of
the SDCF being used in a real software development project. As of 1981 GAKDALF
had not yet been used in a software producfion envirooment. There is no test
data of Tichy’s work to evaluate its performance and effectiveness. What has

been proved however, is its feasibility.

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONRECTION 32

4, SYSTEMS SUPPORTING MODULE INTERCONNECTIOR

There are several programming enviromments and software development systems
that provide module intercomnection facilitigs. Detailed classification of these
systems is difficult (and beyond the scope of this paper) since each has its own

unique characteristics and they emerged from diverse design philosophies.

From the point of view of mdﬁlg interconnection however, we have selected a
Tepresentative sample of the different approaches taken to perform module
interconnection. The sample includes the following systems: PWB, CLU, ADAPT,

MESA, PROTEL, CDL2, SARA and, CGANDALF, Bach of these approaches will be

ot

PWB represents the class of systems that provide facilities for management of @fw g

discussed in wore detail in the following sectioms.

system development (i.é. version comtrol) but lack facilities for strict module
interconnection (i.e. intramodule type~checking, systems structure description,
module accessibility). Systems like the Software Factory [Bratman & Cour; 751,
the SWB System [Matsumoto 81] and, the ARCTURUS System [Standish 811 also fall

in this class.

CLU and ADAPT represent the class of languages and language extensions

perfectly suited to support module interconmection. Languages in this class are W

highly modular and provide comstructs for version definitions. They are based — A
Wﬁ.«

on data abstractions and use the same language for module construction (PS} as e
. R Losadent

=

for system description (PL). This last characteristic is a drawback from the W

point of view of MILs, MODULA and ALPHARD among others, also fall in this class.

MESA, PROTEL and, CDL2 represent the class of fully integrated software

development systems that are actually used in production environments. This

' The facilities supported by the PWB (as of 197¢)

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 33

class of systems perform module interconnection as MILs do but are restricted to
modules written in their own langusges thus inhibiting the use of modules

written in different programming languages.

SARA represents the class of special purpose software design systems at the
development stage that use different approach to module interconmection (SARA

advocates the formal model approach to MILs).

GANDALF represents the class of fully integrated software development systems
that have successfully included one of the MILs described above (INTERCOL) as

one of their development tools.

4.1 PWB

The PWB (Programmer’s WorkBeuch) facility provides limited support for module

interconnection. Bagsed in UNIX, PWB was developed by Bell Labs in 1973°

([Dolotta & Mashey 76], [Ivie 771, and [Bianchi & Wood 76]) to provide tools
and services to ease the load on the application system designer, programmer,
documenter, tester, and development persommel. It is based on the concept that
the facilities needed by program developers bare some difference from those

required by the program users.

PWB succeeds in separating the program development and maintenance function
onto a specialized computer which is dedicated to that purpose. This computer

provides the interface between program developers and their target computer(s).

PWB supplies a separate uniform enviromment in whi eople perform their work.

are & source control system, a

remote job entry system, a document preparation system, a modification request

control system, and drivers that simulate user conditions for testing.

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 34

The PWB Source Code Control System (S5CCS) [Rochkind 75], is a file storage
system that records the various versions of a text file; this is accomplished by
recording the original version plus interleaved modification descrip;ions that
can be applied to create more up-to-date versions. This system provides:
creation of any revision of a source program or text, file protection against
accidental changes, selective propagation of wmodule changes to each of its
revisions and, identification of object and source (revision number, date

created, ete.).

PWB“s SCCS System does not provide syntax constructs for module
interconnection descriptions as a MIL would do. 5CCS is a versiom control tool

only.

4.2 CLﬁ
The programming language (CLU) was designed by Liskov [Liskov et.al. 77] to
implement the comcept of abstract data types. It provides constructs that
support the use of abstractions in program design and implementatiom. A similar
language (ALPHARD) [Wulf 74] was designed mainly to support the construction of
structured programs. Both deal with abstract data types and abstractiom building
mechanisms. Both are derived from SIMULA 67 { (Dahl, Myrhaug & Nygaard 70] and
[Birtwis;le et.al. 73]). Although CLU and ALPHARD are somewhat similar, they

differ in many important details.

In CLU, programs are developed incrementally, one abstraction at a time. A
distinction is made between an abstraction and a program or module. vwhich
implements that abstraction. Anm abstraction isolates use from implementation:
"An abstraction can be used without knowledge of its implementation and

implemented without knowledge of its use.” The CLU library which supports this

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTIOR 35

methodology, maintains informatiom about abstractions and the CLU modules that

implement them.

For each abstraction there is a description unit which contains all system-
maintained information about that abstraction. The jinterface specification which
is that information mneeded to type-check uses of the abstraction is the most
important informatiom of an abstraction contained in a descriptiom uait. In
most cases, this information comsists of the number and types of parameters,

X
arguments, and output values plus any constrains om type parameters.

An abstraction is entered in the 1library by submitting the interface
specification; no implementations are required. A module can be compiled before
any implementationa have been provided for the abstraction it uses. During
compilation the external references of a module mﬁst be bound to description
units so that type checking can be performed. The binding is accomplished by
constructing an association list, mapping names to description units, which is
passed to the compiler along with the source code when compiling the module. The
mapping in the association list is then stored by the compiler in the lihrqry as

part of the module.

The idea of compiling the abstractions with their interface épecificationa
without any implementations needed is the very same idea of MIL75. An important
feature of CLU is its type checking .capability across modules, which is a
natux#l consequence of its objective: to aid the programmer to construct correct

programs. A drawback is its lack of support for system orgamization.

Cooprider showed that a MIL based on a data base processor is more effective

in the control of system organization than a MIL based on a compiler. It could

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 36

be argued then, that the CLU library is the equivalent of a dats base processor
becausg it supports incremental program developme;t but car not however, support
version nor system family cpntrol because the compiler binds a module
permanently to the abstractions it uses. This is the price of stromg type-

checking needed for correct programs. CLU therefore is more of a LPS (Language

for Programming in the Small) than a LPL. W

e - By s

S .

ADAPT (Abstract Design And Programming Translator), a language resembling CLU
in its essentials but with PL/l-style syntax, has been implemented at IBM
[Archibald 81]. It has proven to be as good a mechanism for describing the
detailed semantics of modules as CLU is but, in contrast with CLU, a MIL has

been added. This MIL extension to ADAPT is called External Structure.

The External Structure is a MIL used primarily for system descriptiom with a
facility to comvert the syntax descriptiom into a graphic display. It is used as
a design tool and as a project comtrol facility that provides system structuring
support for programmers and development groups. It allows for separate
compilation of modules and performs inter-module type checking. It is an

automated resource, interacting with the ADAPT compiler.

A drawback in the module interconmnection mechanism of the External Structure

is the restriction to modules writtem in the ADAPT language. A system is
described in External Structure as a collection of modules and their allowable
interconnections. This approach is very similar to the one followed by C/MESA of

the MESA System.

'Sv“’"'“k

ajjiﬂJ’

14 December 1983 SYSTEMS SUPPORTING MODULE INTERGONNECTION 37

4.4 MESA

- MESA was developed by XEROX at XEROX PARC during 1975 ([Geschke et.al. 77]
and [Mitchell, et.al. 79]) and is successfully being used in the design,
specification and implementation of a number of systems. In particular, the
experience of using MESA for the development of a'p'operating system is reported

iz [Lauer & Satterthwaite 79] and {Horsley & Lyach 79].

In contrast with the MILs d;escribed in the previous sections, ﬁESA is both a
programming language and a software development system, and it is currently
being used in a proauction environment. MESA supporfs program modularity as the
basis for incremental program development and provides complete type checking
for subsystems to be developed separately and safely bound together. The MESA
language is similar to Pascal or Algol 68 and with a global structure similar to
t:hat:;,__‘___‘,L;'__J.Zi"”5'1._1;_;’1.1’—/2\./l MESA by itself would be a stronmgly typed LPS supporting
separate compilation but, with the addition of C/MESA which provides separate

configuration descriptions, it became a very powerful snd practical MIL,

C/MESA, a configuration language developed in 1978, describes the
organization of a system and coutrols the scope of interfaces. C/MESA has many
of the attributes of a MIL as deacribed in section 2 above and is used in the

MESA system to specify how separately compiled modules are to be bound together

to form configurations.

From the MILs point of view, MESA and C/MESA form a well integrated set of
tools covering the design amd implementation aspect of the life—cycle of a
software system. The MESA System succeeds in implementing some of the ideas
- originated in MIL75 and parallels 'some of the ideas of Cooprider and Tichy on

version contrel but at a less general level. The goal of C/MESA is to allow the

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTIQH 38

user to vrepresent a complete system in a Thierarchy of ‘configuration
descriptions. In MIL75 terms, C/MESA has all the syntactic constructs. to

Trepresent a system tree.

Systems built in HESA.are collection of modules of two kinds: definjtionms
and programs. A definitions module defines the interface to am abstractionm by
declaring shared types and constants and by naming procedures available to other
modules. Program modules are pieces of source text similar to Algol procedure

declarations or Simula class definitioms.

A module declaration in MESA defines consisting of a

collection of variables and a set of procedures that.0perate on those variables.
This concept of a module is more restricted than tha; used by the MILs described
above because at the level of module definition MESA is a programming language
only., Modules commnniéate with each other via interfaces. A module may import
an interface, in which case it may “use" facilities defined in the interface.and
implemented in other modules, The importer is called a &lient of the interface.
A module may also export am interface, ir which case it makes its own f#cilities

available (provides) to other modules as defined by that interface. Such a

module is called implementor.

Au interface consists of a sequence of declarations defined by a defini;;ggs
module. Ounly the names and types of operations are specified in the interface,
not their impleméntations. Figure 4-1 below illustrates a definitioms module
" and one of its implementors.Modules and interfaces are compiled separately. The
compiler reads each of the imported modules and obtains all of the information
necessary to compile the importing module performing type—checking for all

references. No knowledge about any implementors of the interfaces is required.,

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCORNECTION 39

Abstraction:DEFINITIONS =
BEGIR
it:TYPE-o--o;rtng'oou-;

p:PROCEDURE;
pt:PROCEDURE[it] RETURNS[rt];

LN N 2

ERD

Implementer : PROGRAM IMPLEMENTING Abstraction =
BEGIN
OPEN Abstractiom;
X :INTEGER; ' .

p:FUBLIC PROCEDURE = <code for p>;
pl:PUBLIC PROCEDURE[i:INTEGER] = <code for pld>;
pi:PUBLIC PROCEDURE(x:it] RETURNS{y:rt] = <code for pi>;

END

Figure 4-1: A Definitions Module and ar Implementor in MESA Taken from
{Geschke et.al. 77]

The MESA binder collects exported interface records which have been
identified with a unique name by the compiler, aund assigns their values to their
corresponding interface records of the importers. This unique name is what-
allows the binder to check that each interface is used in the same version by
every importer and exporter. - The binder uses the configuration description
program (coded in C/MESA) to bind modules together to form configurations.
Figure 4~-2 below shows the partial code for a system configura;ion. In this
éxample, A, B, Cyees are the interfaces and U, V, W,... are the modules that

import/export them as indicated by the special comment characters (=-).

The definitions modules of MESA are equivalent to the declarative statements
of any of the MILs described above and the separate C/MESA code is equivalent to

a MIL program without the declarative statements. For example, a definitions

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 40

Configl :CONFIGURATION
IMPORTS A
EXPORTS B =
BEGIN
U; =-imports A,C
\'H —exports B,C
END.
Config2:CONFIGURATION
IMPORTS B =
BEGIN
Ww; —imports B, Exports C
x; --imports B,C
m.
Config3:CONFIGURATION
IMPORTS A =
BEGIN
Configl;
Config2;
m.

Figure 4-2: A Partial Configuration Description in C/MESA Taken from
[Ceschke et.al. 77)

module in MESA has statements analogous to provides, originates, and comsist of
from MIL75 and to synthesizes, inherit, and has successors from Thomas” MIL.
Such statements in MESA however, are not explicit as in the MILs but rather '

implicit as observed in the example of figure 4~1.

-~

. }
The separate C/MESA code as illustrated by the example of figur

explicitly uses IMPORTS and EXPORTS predicates to define resource flow but does
not give an explicit view of the resources imported and exported by each of the
component modules. Such declarations are implicit ir each module and the C/MESA

programmer must make such declarations visible with comments.

This approach to module interconnection is differemt from the approach
advocated by the MILs described above. The module interconnection facility
offered by the MESA System is a combination of an implicit declaration of

resource flow by each module and an explicit configuration description. 1In

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION _ 41

contrast, the other MILs propose a separate module description and system
configuration coding where all resource flow is explicit. A drawback however,

is that MESA modules are restricted to the MESA language.

In contrast with the other MILs, MESA is a widely used and tested facility
within XEROX where a substantial améunt of experience on its use has been
accumulated.

4.5 PROTEL

" PROTEL (PRocedure _Qri;nted Iype Enforcing Language). is a tool that supports
type checking across modules in a fashion similar to MESA [Cashin, et.al. 811.
PROTEL was implemented in 1975 by Bell-Northern l-lesearch of Ot-:tawa, Canada and

has been used extensively since then mainly by its own developers.

This system is based on the compile-link-load paradigm like UNIX but performs
type checking across modules like MESA. To support type checking of inter-
section anci inter-module references, the compiler performs a process called.
embedding which consists of first writing symbolic information to an object file
and then reading that informatiom for all sectioms visible to the onme being
compiled and using it td initialize the compiler symbol table. With the symbol
table so imitialized, full compile time checking of all references can take

place.

A Library System was added im 1977 to sﬁpport module intercoumection and
system version contro.l but resulted in an enviromment too involved to be
practical {Cashin, et.al. 81]. PROTEL is very limited in controlling system
versioms and in supporting system organizationm. The Library System is

restricted to modules coded in PROTEL,

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 42

4.6 CDI.i

The CDLZ system is a development enviromment centered arcund ome single
language, the implementation language CDL2 {Bayer 81]. It is intended for the
development of large, sequential and non-numeric systems. The CDL2 lab was

developed at the Technical University of Berlin between 1977 and 1980.

From the MILs point of view, a CDL2 program consists of modules, which may_' bg
connected via explicit export and import interfaces. Each module cont-ains a
strict hierarchy of lavers. Iﬁer layers can export resources to layers a.t a
higher 1level of abstraction. In figure 4-3(a) hﬁrizontal arrows represent

import/export module interfaces and upper pointing arrows show layer export

direction.

ncdule 1 medule 3 ' ;
I uamnanned I | i layer { +1 !
' i< *H H H + . ‘

i layer 3 medule 2 { layer 2 |

i T i : (1 H
s T ; :
| layer 2 ({ew=] layer 3 |—>] layer 1 | " S
1 ']] ! H HE ! H v ' : !
: T_—': ; T_i sbstraction | | sectica |<—>! section :'<—.>: secticn ! !
| layer ! j=—>! layer 2 | L 1 i ! -, ! ! P
; R S i ;
! i ; layer 1 !
i layer 1 E 1 ;

]]
i extension
¢ >
a: Module Level b: Layer Level

Figure 4~3: Modular Structure in CDL2 from [Bayer 81]

Within the layers is found a set of sections comnected by explicit interfaces
to other sections in the same layer or in the next higher. Export of resources
within one same layer is called gxtension whereas exports to the next higher

layer are called abstractions. Sections are functional units like modules are.

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 43

Extension is used to extend the power of a layer, abstraction is used to realize
ome level of the abstract machine in terms of the next lower one. The bfakedown
of modules into layers and of layers into sections allows the user . to define
different layers of interconnpection. If a wmodule for example, is originally
designed at a2 very low level of abstraction, a higher level description of the
same module could be designed to provide a simpler, more gemeral interconmnection

interface.

The wunique hierarchical organizatior of modules in CDL2 provides the
structure for describing a very high 1level design that could accommodate
different versions of the same module. The lower level layers of a particular
module could be replaced by layers performing the same function but having
different chﬁracteristics. This property is very effective when constructing

trangportable systems. -

The CDL2 Sjstem is centered around a command interpreter that gives the ﬁser
a uniform language to control all components of the system (Editor, Formater,
Anaglyzers, Coders and, Database). From the MILs point of view, the Local and
Global analyzers are essential because together they perform the role of a MIL.
The Local Analyzer consists of a Syntsx Checker and a Local Semantjc Checker.
The Global Aralyzer consists of a Global Semantic Checker and am Intermodule

Interface Checker. The Itermodule Interface Checker is used during system
design and specification to create a general design description. The Global
. Semantic Checker verifies import/export data types across modules (similar to
the MIL75 compiler). The Local Semantic Checker verifies internal module

interfaces (among layers).

The CDL2 System is presently being used in various research projects within

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 44

the Technical University of Berlin and has been transported to other sites where

it is being used as an experimental software development envirooment.

4,7 SARA

SARA (System ARchitect”s Appremtice) is a computer-aided system which
supports a structured multi-level requirement driven methodology for the design
of reliable software or hardware digital systems. SARA was designed at UCLA in
1976 ([Estrin 78], [Campos & Estrin 78al, and [Campos & Estrin 78bl) and has

been under continual development since then.

The SARA methodology, based on formal models, supports both a top-down
partitioning procedure (refinement) and a bottom—up composition procedure
(abstraction). It deals mainly with the structure of the record of execution
providing effective means for synthesizimg and an#lyzing a system. To accomplish
this, SARA makes use of a structural model (SL1) and a behavioral model (GMB -

Graph Model of Behavior).

The structural model resembles the copntour model [Johnston 711 wused to
describe the semantics of algorithm execution in block atructured processes. The
contour model comsists of graphs that represent processes enclosing nested
blocks. The structural model consists also of enclosing contours but in this
case they are used mainly to enforce modularity by providing a better means to
enforce encapsulation. They permit the isolation of p#rts of the system which
then can be modeled separately. SL1 is SARA”s modeling language designed to

describe the structure of a modular system.

The behavioral model consists of two graphs: a flow-of-control (CG - Control
Graph) and a flow-of-data (DG - Data Graph) together with interrelations

associated with the nodes of the data graph. The CG is a Petri-net of processes

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 45

and directed control arcs and the data flow is modeled in the DG through
processors and data sets, where the processors are responsible for the

transformation of the data atored in data sets.

The structure of the record of execution is effectively accomplished by
mapping between the behavioral and structural models. This mapping provides the
SARA tools‘wi;h means to detect any inconsistency in the design but, it does not

provide any facilities for module interconnection, leaving SARA as a methodology

for system specification and design but not for system implementation.

In 1979 a MIL was added to SARA [Pemedo & Berry 79] to deal with the
algorithm structure. This MID (Module Interface Description)! is intended to

enhance the power of SARA by providing a smoother path from modeling to code.

In this new model a SARA-MID mapping is obtained in which the SL1-GMB model
identifies the variables and the calls of the code; the MIL model identifies the
type and procedure definitions; and the mapping (SARA-MID) says which variable

is of what type and which call is of what procedure,

As gf:szﬁ:ggé SARA-MID methodology was only a model open to many questions

about efficiency, effectiveness, and performance. Work is still being conducted

on its integration into the SARA system.

W

lThxs work was formerly called MISC for <Module Interconnection Specificatiom
Capability

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 46

4.8 GANDALF

GANDALY [Haberman, et.al. 81) is & new software development enviromment to
some extent different from all the conventional tools, such as the ones
 described above. It is designed for projects that use the new Ada language aﬁ{'bdr’

its current implementation is writtem in the C language.

It is called ar "enviromment” rather than a "tool"™ because it integrates
uniformly a set of three development support tools. These tools can cooperate
closely with each other since they are all based on Ada and are generally
knowledgeable sbout the enviromment. They operate on a common representation:
the syntax tree rrpresentation of the program. These three development support

tools are:
l. A collection of incremental program construction tools
2. A collection of system version description and generation tools, and

3. A collection of project management tools.

The incremental program description tool comsists of a syntax directed editor
and a ayntax directed dypamic gghgggg;. The syntax directed editor is formed by

the pair (program constructor, unparser) as a replacement for the typical triple
(line editor, lexical analyzer, syntax analyzer). This new approach allows the

programmer to write syntactically correct programs the first time around.

The idea of the dypamic debugger is that a user can write his debﬁging
statements in terms of the source representation of his program instead of in
terms of machipe code, memorf locations and.fast registers. A program can be
bullt incrementally because the program or subprogram bLeing debuged is halted,
corrected, recompiled, linked, and loaded automatrcally. Execution can then be

continued upon modification.

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONKECTION 47

The System Version Description and Generation Tool is actually a MIL
developed by Cooprider and later by Tichy. This MIL addresses the two basic
problems of system composition: module interface control and system version
control (a more detailed description is given in the next section). It provides’

a systea generation facility based on system descriptioms thus taking over all

necessary bookkeeping from programmers or system builders, qualitative
improvement over UNIX, MESA, PROTEL, and SARA. Type checking across modules and
syst. boundaries is also provided and performed independently and/ox
incrementally thus helping the system builder in assembling pérfeétly matched

nodules,

The purpose of the Project Management facility is to support collaborationm of
programmers om a project. It comsists of two parts: 1) Software Development
Control (SDC), responsible for coordinating the state of the system, and 2)

Generation and proliferation of documentation.

The former is also respomsible for avoiding conflicts of interest among
project programmers; i.e. it will not permit two programmers to alter a source

concurrently. Access rights are automatically checked by the system so that

unauthorized users may no_f. manipulate th W

VJMJP

The latér part ‘is still under development. It is intended to fofce users to
comment on source object manipulations by prompting programmers for
documentation whenever additions or modifications are made to the system. This
ensures thai: there is no time when a change is been made to the system state

that is not reflected in the documentation.

In contrast with other systems composed of tools that are used individually

14 December 1983 SYSTEMS SUPPORTING MODULE INTERCONNECTION 48

for different tasks, GANDALF provides a well integrated enviromment that uses
among other tools the Iaﬁest MIL for module and version control. GANDALF may be
considered as one of the first revolutionary software development enviromment of
the 80“s. It is built on most of the ideas described in the previous sections.
It uses, for example, the concept of structured programming and stepwise
refinement for construction of modular programs; the ideas of Parnas [Parnas
72} for module construction using i.n_fbfmation hiding; the concept of separating
system specification (LPL) from implementation (LPS) [DeRemer & Kron 76];
system version representation by abstract data types; and several other ideas
from previous tools i.e., UNIX, MESA, CLU, etc., GANDALF has been implemented

and is currently under evaluatiom.

4.9 TOOL SUPPORT FOR INTERCONNECTION
Figure 4-4 below illustrates graphically the relatiomship among the tools

described above and their support of some kifid of module interconmection.
Full Support lq_o_h: '

Gandalf C/Mesa SARA-MID CDL2
Intercol Cooprider”s MIL Thomas” MIL MIL75

Partial Support Tools: _ ‘/VO)' WMJ‘A' /
::’Tfai - Protel " Ada__~ Mesa
PWB ~_ NOPAL D SARA

R

Marginal Suppert Tools:

CLU SIMULA
modular languages._

W

Y
4 mDEIz ALPHARD

Figure 4-4: Some Tools Supperting Module Interconnection

14 December 1983 CONCLUSION 49

3., CONCLUSION

After taking the reader through this long and detailed description of module
interconnection languages and of software development systems that support some
kind of module intercomnection, it would be worthwhile to mention gg,le;%;/fheir

main contributions to the partial solution of the present “software crisis".

v‘"“(

MILs and their related processors represent a set of tools which primarily
aid the software engiﬁeer during the architectural design, evolution and
maintenance phases of the system life-cycle. A secondary purpose of MILs is to
serve as a goal for systems analysis and a constraint for systems
implementation. To be effective, a MIL must be - integrated into a softwafe
development system or facility where the MIL description of a system is checked

every time a change to that system is made.

Within this range of effectiveness of the MILs, the mair contributions are:

1. MILs provide a means to represent the architectural design of a
software system in a separate machine checkable language. Design and
construction information is successfully integrated at the
programming-in-the-large level. These notatioms should be of interest
to researchers in automatic programming and program generation since
they are developing mechanisms to manipulate this information.

2. MILs can prohibit programmers from changing the system architectural.
design during evolution and maintenance without an explicit change in
the architectural design as represented by the MIL.

3. MILs can represent the construction process for a system and can
serve as the basis for & unified data base during system development.

z) o L 3) '

4. A consequence of (1) is a substantial improvement of the maintenance
stage. A system can be revised, modified and type checked at the MIL
level before attempting any changes to the code.

These contributions although significant, are only a small step towards the
solution of the software crisis. On the other hand, some of the main limitations

of MILa can also be listed.

14 December 1983 CONCLUSION 50

1. The contribution of MILs to the design stage is mainly in checking
degign completeness ot in performing the design., The design must be
carried out by means of the present methodologies or techniques.

2. A MIL becomes an effective tool only in very large systems. The
amount of effort required to use a MIL along with the development of
a system is very large and it pays—off only if maintenance is
extensive,

3. MILs do not provide any means for the user to determine which of the
already constructed modules can be used when designing a new system.)
This problem of course was mot intended to be solved by MiLs, but
seems to be a very attractive feature to have considering the
information contained in a MIL description of a system,

A question naturally comes to mind: To what extent could the main ideas and

concepts of MILs be used to improve other stages of the software life-cycle?

B o~

M

14 December 1983 FUTURE RESEARCH 51

6. FUTURE RESEARCH
Some of the main concepts of MILs could be used as driving ideas in other
areas of current research in computer science in gemeral and in software

engineering in particular.

The idea in MILs of a separate language to describe system structure could be
extended to study the problem of representing aystem specificatioms. A “module

specification language" could be proposed together with a study of what methods

we must develop for encoding general specifications and how ,coﬁa"we match

"

requirement specifications with provision specifications. Amo\ﬁﬁ""the issues to
be addressed wi.th_ this proposition are compatibility, upward compatibility,
functicnal equivalence, minimal satisfactiom, uniformity, and type [Cooprider
79]. Reusability is also an imporéant issue directly related to this matching

gcheme,

Reusability, as proposed by Freeman [Freeman 80 ind) Neighbore [Neighbors
80}, should seldom deal with executable code a J\y:iéily use non-executable
work products from system analysis and design. A research question is then how
could a MIL be expanded or augmented to include _information about availability
of .resources and modules? At present, MILs provide a description of system
structure and resource flow among modules (system components) but more
information is needed to indicate the specifications of such modules dnd
resources. How much information is needed t§ be able to decide ﬁhefher this or

that module will satisfy the prOposed design requirements?.

Program generation techniques is an area where some MIL comcepts have been
used. MODEL [Prywes 77] and NOPAL [Sangal 80) sre two non-procedural

languages used for automatic gemeration of computer programs that support module

M‘M
el

14 December 1983 FUTURE RESEARCH 52

description and provide limited module interconneﬁ;ion. There is however, a
need of extensive research in this area., The way MILs comsolidate degign and
construction processes in a single description for example, could provide some
insight into the question of encoding the methods by which information from a

problem is encoded in programs.

There are further reseaéch questions that relate\fgoth,}/the reﬁsability
probleg and the automatic program gemeration problem. The following questiﬁn
touches the very concept of reusaﬁility. To what extent is it practical tolreuse
components that can be easily generated by-automatic'programning systems?. Maybe
it would be more practical to reuse comstruction processes as represented in
MILs than to reuse design specifications (the first being a high level
executabie code, the second a non-executable work product). To reuse a
construction process would be however, more attractive tham reusing a degign

specification.

Another area that deserves research was proposed by Tichy {Tichy 80]. He
suggests the study of techuiques to implement automatic retesting after changes
to insure that an error that has been found previously, has not been

re-introduced.

A common sémptom of large and successful systems is massive change over a
long period of time. These changes occur aloug three lines: evolution (system
functional change), maintenance (system error correction), and hardware/software
ch;nges (cdnfiguratious) supported by the system. Each of these changes
provides an index into a "versiou space" for a particular system. The MILs of
Cooprider [Cooprider 79] aand Ticﬁ} [Tichy 86] started to examine the problem

of version control but much more work is needed. The probiem of which changes a

14 December 1983 FUTURE RESEARCH 53

new version of a system along some dimension inherits from the other dimensions

Temains unsolved.

In conclusion, having examined most of the existing MILs, some of the
software development tools that support module intercomnection, and their
significant contributions to improving the state of the art in software
engineefing technology we find out that there is still a long way to go before a
major. breakthrough in the manufacture of software is achieved. Every ﬁajor

breakthrough in technology however, has been attained through small steps.

14 December 1983 ACKNOWLEDGMENTS 54

ACKNOWLEDGMENRTS

We are deeply indebted to Peter Freeman for Kis untiring support and
encouragement, as well as for introducing the authors to MILs. His valuable
comments while reading the first drafts of this work are appreciated. We ;ant to
thank Anthony Wasserman for detailed and constructive éomments as well as Haydée

Prieto for her editorial assistance.

14 December 1983 ACKNOWLEDGMENTS : 33

BEFERENCES
v
[Archibald 81]
Archibald, J.L.
The External Structure: Experience with an Automated Module
Interconnection Language. :
Ihe Journal of Systems and Software, 2(2):147-157, June, 1981
[Balzer, Goldman & Wile 76] .
Balzer, R.M., Goldman, N.M., and Wile, D.
On the Transformational Implementation Approach to Programming.
In Proceedings of the Second Intl, Conference on Software
Engineering, pages 337-344, IEEE, 1976.
[Bayer 81] T :
Bayer,M. et.al.
Software Development in the CDL2 Laboratory.
In Softwgre Engineering Enviromments, pages 97-118.
North-Holland, 1981, .
[Bianchi & Wood 76]
Bianchi, M.H, and Wood, J.L.
A User,s Viewpoint on the Programmer”s Workbench.
In Proceedings of the Second Intl. Conference on Software
Engineering , pages 193-199, IEEE, October, 1976.
[Birtwistle et.al., 73]
Birtwistle, G.M., Dahi, 0-J.,, Myhrhaug, B., and Nygaard, K.
Simula BEGIK.
PetrocellifCharter, 1973.
" [Bratman & Court 75}
Bratman, H., and Court, T.
The Software Factory.
IEEE Computer, 8(5):28-37, May, 1975.
[Campos & Estrin 78al ‘
Campos, I.M., and Estrin, G.
SARA Aided Design of Software for Concurrent Systems.
In Proceedings of the National Computer Conference. AFIPS Press,
1978,
[Campos & Estrin 78b]
Campos, I.M,, and Estrin, G.
Concurrent Software System Design Supported by SARA at the Age of
One. :
In Proceedings of the Third Intl. Conference gn Software
Engineering, pages 230-242, IEEE Press, Atlanta, Georgia,
USA, May, 1978, ,
[Cashin, et.al. 811" : S
Caghin, P.M,, Joliat, M.L., Kamel, R.F., and Lasker, D.M.
Experience with a Modular Typed Language: PROTEL.
In Proceedings of the Fifth Intl. Conference on Software
Engineering, pages 136-143. IEEE, San Diego, California,
March, 1981,

14 December 1983 - ACKNOWLEDGMENTS ' ' 56

fCooprider 79]
Cooprider, L.W.
Ihe Representation of Famlies of Software Systems.
PhD thesis, Carnegie-Mellon University, Computer Science
Department, April, 1979.
CMU-CS=-79-116.
[Dahl, Myrhaug & Nygaard 70]
Dahl, O.J., Myrhaug, B. and Nygaard, K.
JThe SIMULA 67 Common Bgse Language.
Technical Report $-22, Horwezgan Comput1ng Center, 1970.
{DeRemer & Krom 76]
DeRemer, F., and Kron, H.
Programming-in~the-Large Versus Programm;ng-xn—the-Small.
IEEE Transactions Op Software Engineering, June, 1976,
This paper was presented at the Internatiomal Conference on
Reliable Software, Los Angeles, California, April 1975,
[Dijkstra 65]
Dijkstra’ E.
Programming Considered as a Human Act:vzty.
In Proceedings of the 1965 IFIP Co 8, pages 213-217. North
Holland Publishing Co., Amsterdam, The Netherlands, 1965.
[Dolotta & Mashey 76]
Dolotta, T.A. and Mashey, J.R.
An Introduction to the Programmer’s Workbench.

In Proceedings of the Second Infl. Conference on Software
Engineering, pages 164168, IEEE, October, 1976,

[Estrin 78]
Estrin, G.
A Methodology for Design of Digital Systems ~ Supported by SARA
at the Age of One. '
In Proceedings of the Nationa L_M Conference. AFIPS Press,
1978.
Vo. 4&47.
[Preeman 80]
Freeman, P,
Reusable Software Engineering: A Statement of Long-Range Research
Objectives.
Technical Report TR 159, University of Californiz, Irvine,
November, 1980.
[Geschke et.al. 77]
Geschke, C H., Morris, J.H., and Satterthwaite, E.H.
Early Experience with MESA,

Communications of the ACM, 20(8):540-552, August, 1977,
{Gries 81]
Gries, D,)
Iexts and Monographs in Computer Science. : The Science of
Programming. -

Springer Verlag, New York, 1981.

14 December 1983 - _ ACKNOWLEDGMENTS 57

[Haberman, et.al. 81]
Haberman, N., Perry, D., Feiler, P., Medina-Mora, R., Notkin, D.,
Kaiser, G., and Denny, B. ’
A Compendium of Gandalf Documentatiop.
Carnegie~Mellon University, Pittsburg, Pennsylvamia, 1981.
[Horsley & Lynch 79]
Borsley, T.R. and Lynch, W.C.
Pilot: A Software Engineering Case Study.
In Proceediogs of the Fourth Intl. Conference on Software
Epgineering, pages 94-99. IEEE Press, Munich, Germany,
September, 1979,
[Ivie 77]
Ivie, E.L.
The Programmer”s Workbench ~ A Machine for Software Development.
: Communications of the ACM, 20(10):746-753, October, 1977.
[Johnston 71)
Johnstom, J.
The Contour Model of Block Structured Processes.
In SIGPLAN Notices-Proc. Symp. Data Structures aund Prog.
Languagesa, pages 55-82. ACM, 1971,
[Lauer & Satterthwaite 79} :
Laver, H.C., and Satterthwaite, E.H.
The Impact of MESA on System Design.
In Proceedings of the Fourth Intl. Conference on Software
Engineering , pages 174-182, IEEE, Munich, Germany,
: September, 1979,
fLiskov et.al. 77]
Liskov, B., Snyder, A., Atkinsom, R., and Shaffrt, C.
Abstraction Mechanisms in CLU,
Communications of the ACM, 20(8):564-574, August, 1977.
[Matsumoto 81]
Matsumoto, Y. et.al.
SWB System: A Software Factory.
In Software Engineering Environments, pages 305-318,
North-Holland, 1981.
[Mitchell, et.,al. 79]
Mitchell, J.G., Maybury, W., and Sweet, R.E.
Mesa Language Manual,
.Technical Report CSL-79-3, Xerox Corp., Palo Alto Research
. Center, April, 1979,
[Neighbors 80]
Neighbors, J.M. :
Software Coustruction Using Compoments.
PhD thesis, University of California, Irvine, 1980.
ICS Technical Report 160.
[Newell et.al, 61}
Newell, A., Tonge, F.M., Feigenbaum, E.A., Green, B.F., Mealy,
G.H. .
Information Processing Langusge-V Manual
Second edition, The.RAND Corp., Englewood Cliffs, N,J., 1961,
printed by Prentice—Hall, Inc.

14 December 1983 ACKNOWLEDGMENTS 58

[Page-Jones 80]
Page—Jones, M.
Ihe Practical Guide to Sgructured Systems Design.
Yourdon Press, 1980,
[Parnas 72]
Parnas, D.L.
On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, December, 1972.
[Penedo & Berry 79]
Penedo, M.H., and Berry, D.M.
The Use of a Module Interconnection Language in the SARA System |-
Design Methodology.
In _IQM_ of the Fourth Intl. Conference on Software
Engine » Ppages 294-307, 1IEEE Press, 1979.
[Prieto-Diaz 82]
Prieto-Diaz,R. and Neighbors, J.M.
Module Intercompection Languages: A Survey.
Technical Report UCI-ICS-TR189, University of California, 1982.
[Prywes 77]
. Prywes, N.S.
Automatic Generation of Computer Programs.
In Advances ic Computers. Academic Press, 1977.
[Rich, Schrobe & Waters 79]
"~ Rich, C., Schrobe, H.E., and Waters, R.C.
Overview of the Programmer”s Apprentice.
In Proceedings of the Sixth Joint Conferenge on Artifjcial
Intelligence, pages 827-828. Stanford Computer Science Dept.,
1979.
[Rochkind 75}
Rochkind, M.J.
The Source Code Control System.
IEEE Transactions oun Software Engineering, se-1(4):364-370,
December, 1975.

[Sangal 80]
Sangal, R.
Modularity in Nop-Procedural Languages Through Abstract Data
Types.

PhD thesis, The Moore School of Electrical Engineering,
University of Pennsylvania, August, 1980,
[Standish 81]
Standish, T.A.
ARCIURUS An Advanced Highly-Integrated Programming Enviromment.
In Software Emgineering Envi nts, pages 49-60.
" North-Holland, 198l.
[Stevens, et.al 74]
Stevens, W.P., Meyers, G.J., and Constantine, L.L.
Structured Design.
IBM Systems Jourmal, 1974.

14 December 1983 ACKNOWLEDGMENTS 59

[Thomas 76]
Thomas, J.W. '
Module Interconpection in Programming Systems Supporting
Abgtractiomn,
PhD thesis, University of Utah, June, 1976.
[Tichy 79])
Tichy, W.F.
Software Development €Control Based on Module Interconmpection.
In Proceedings of the Fourth Intl. Conference on Software v
Engineering, pages 29-4l, IEEE Press, September, 1979.
[Tichy 80)
Tichy, W.F.
Software Development Control Based on System Structure
Degcription.,)
PhD thesis, Carnegie-Mellon University, Computer Science
Department, January, 1980.
[Wulf 74)
Wulf, W.A. .
ALPHARD: Toward a Language Lo Support Structured Programs.
Technical Report, Carnegie-Mellon University, Computer Science
: Department, April, 1974.
[Yourdon & Constantine 79]
Yourdon, E. and Constantine, L.L.
Structured Design: Fundamentals of a Dicipline of Computer
Program and Systems Design.
Prentice-Hall, Englewood Cliffs, N.J., 1979.

