EX emm

Drace Domain Analysis for e Real Time Application:
Digcussion of the Results

by
Sigmund Sundfor
June 1983

-Reuse Project RTP 016

Department of Information and Computer Science
University of California, lrvine

Irvine, CA 92717

This research was supported by NSF grant MCS-81-03718 with the
cooperation of the Air Force Office of Scientific Research, and
grants from A/S Kongsberg Vapenfabrikk and Royal Norwegian

Council for Scientific and Industrial Research.

Table of Contents

1. Acknowledgments
2. Introduction :
3. Evaluation of the Analysis and the Results
3.1 Using Draco
3.1.1 The Amalysis Process
3.1.2 DUnsolved Problems
3.1.3 The Draco Toolset
3.2 The Analysis Dome
3.3 Applicability to Real-Time, Embedded Systems in General
4. A Procedure for Doing Domain Analysis
5. Summary
I. A short introduction to Draco
I.1 The Draco View of Software Production

24 June 1983

L L I RS =
OO WM Wk~ b

ii 24 June 1983

List of Figures

Figure 3-1: |Large systems has to be specified in terms of several
domains

Figure 3-2: A suggestion for representing large systems as a set of
specifications written in different domain languages.

Figure 3-3: A tactical display picture

Figure 3-4: Part of an example witten in the domain language. It is
taken from the graphic representation and task definitions.

i3
15

1 24 June 1983

1. Acknowledgments

I would like to thank everybody who has helped me with this work. In
particular, I would like to thank Peter Freeman who invited me to come to
Irvine and suggested this work. He has guide& and encouraged me along the way
and reviewed the work as it has progressed. Jim Neighbors whose thesis is the
basis for this work, has patiently explained the principles of Draco, helped
sort out my problems with the wmechanism and givem me a2 lot of useful
suggestions. Ira Baxter has helped me evaluate several of the ideas. Tom
Marlin and Tore Aavatsmark helped review part of the SADT models. Martin Katz
has helped me out of the numerous "fights" I have had with the computer system

and the tools.

2 24 June 1983

2. Introduction

Draco was developed by Neighbors [Neighbors 80] to demonstrate a way of
capturing and reusing analysis, design and program components. The intention
of this study has been to gain some experience in how well this approach works
for real time embedded software [Freeman 82]. This is ome out of two reports
on the work done, The other report presents the domain analysis itself

[Sundfor 83]This report discusses some of the results.

The motivation for doing this study is that software development has become
a major cost for real-time, embedded computer systems. Reusing software
workproducts may be a way of drasticaly increasing productivity. This is what
Draco sets out to provide. Furthermore there is 2 shortage of people to do
this software development. Those that are competent to do it, have to a large
extent more knowledge of the application than of computer science. This does
make the Draco approach interesting because it sets out to provide a tool (the
domain language) that allows the system builder to definme the system in the

terms used in the application.

Originally the intention was to analyze real-time, embedded systems in
general. This was found to be too wide am area to be treated as a domain.
Instead, the application "ship borme gum control systems” was chosen. This is
an area the author has some experience in from industry. The result of the
initial analysis of this, was that also this application would be difficult to
represent a8 a domain. It is reasoned in the other report that such systems

would probably have to be represented as a collection of domains.

The domain that was finally chosen for the Draco domain analysis was that
of the tactical plot in ship borne gun control systems. The domain analysis
basically should result in a description of the objects and operators im the
domain. This information is then captured and implemented in the form of a
domain language. The analysis done includes the definition of the domain
language syntax in form of the Draco parser definitiom, and the prettyprinter

for printing out the internal form. To actually implement working systems,

3 24 June 1983

transformations and refinements for the domain will also have to be defined.

This is not done in the present study.

This report discusses how well Draco worked for this application. It also
considers to what extent Draco may be applicable to other domains in the
real-time, embedded systems area. Some of the problems experienced in using
the approach are presented. In addition, some possible problems that are
foreseen based om the authors experience in developing such systems are

mentioned.

The report includes a suggestion for how domain analysis can be performed
based on this work. It presents the different stages of the analysis and

discusses the activity that has to be performed.

4 24 June 1983

3. Evaluation of the Anglysis and the Results

Before the results are discussed, a few comments to this study may be
useful: The purpose of this study has not been to demonstrate the
effectiveness of Draco. Demonstrating that one actually can make systems and
not just small examples was dome as part of the original thesis work by Dr.
Neighbors, and is also part of the research he is doing now. Dr. Neighbors
work demonstrates the power of the approach and that it actually works. For
this study, one could say: "Given that Draco provides a powerful approach and
set of tools for developing systems, cam it also be applied to real—time,
embedded systems?" This study has aimed at giving some insight into this and
particularily to find what special problems there may be for domains in this
field when using Draco. It does therefore not discuss whether or why an

approach like Draco can be a very efficient way of increasing productivity.,

The intention has also been to gain wmore experiemce in doing Draco domain
analysis. In particular, this study has'given experience on how easy Draco is
to use for somebody with application background (the author has several years
of experience in development of real-time systems, but previousiy no formal

computer science training).

5 24 June 1983

3.1 Using Draco

3.1.1 The Analysis Process

Draco is really a set of principles. In addition it provides a set of
tools for implementing these. These two aspects should therefore really be
evaluated separately. The tools do necessarily bear some evidence of being
the result of a research project rather than a fully industrialized project.
The criticism of the user friendliness of the tools is not a reflection on the

methodology principles.

The starting point of the Draco approach is the domain analysis. This was
the work done in this study. This forces the user to do a proper anmalysis and
record the results in a formal manmer. It does iﬁ effect enforce the
principle that most people in software engineering agree upon today, namely
that more time spent "up front" in the development process saves money for the
project as a whole. The domain analysis goes further than that in that it
requires the analysis of a complete domain, not just a particular instance of
that domain. The additional investment required by this is only justified if
one will be building several systems in that domain, i.e. if the results can

be reused.

The domain analysis did take quite a bit of time. One of the initial
problems was appreciating what the domain analysis actually entails and what a
domain is.{The meaning of the word "domain" was clear, but not the meaning in
this context.) In retrospect, the domain analysis is not very differesat from
an ordinary analysis except the fact that ome is trying to amalyze the whole

domain., When the work started, this was not so clear.

Another term did also cause some initial confusion. The prettyprinter was
first understood as being part of the end product made using Draco. Instead
it is part of the tools like the parser that help a system builder make

systems using Draco.

When ome does not fully understand a concept and how it works, it is

6 24 June 1983

difficult to bound the problems. The knowledge gained on Draco during talks
by and with Neighbors and Freeman helped a lot in this respect. This problem
will probably be alleviated for other domain analysts as more examples and

documentation are developed.

Quite a bit of time was also spent on cut and try. There was 1o
recommended procedure for doing the domain analysis. It can be argued that
one just should do it like any other analysis in software development. But,
first of all there is not just one way of doing analysié. Secondly, the main
workproduct from the analysis, the domain language, influences the form the
analysis takes. Later on in this report, a procedure is suggested based on

this experience.

Once the above problems were handled, the analysis went well. The quality
of the workproduct will have to be evaluated by others who know the domain,
but it was possible to capture much of the domain knowledge for the tactical

plot in a language.

7 24 June 1983

3.1.2 Unsolved Problems

The original model for building systems using Draco was something like: A
system builder will express the system specificatior in a domain language.
This specification is then transformed (simplified) and refined into other
underlying domains. There can be a whole network of domains. The domain
language that the system builder uses initially does in effect serve as a
formal specification language. The language should as far as possible use the

notations of the application.

This study indicates that this type of system cannot conveniently be
expressed as one domsin, A ship borne gum control system is what Lehman and
Belady [Belady & Lehman 79] describes as "a large system". It essentially
lies outside the grasp of a single individual., It will require an organized
group of people to design and implement it. This is not so much a reflection
on the size of the final program. Draco is indeed a tool that can make us
handle that. However, it can be characterized as large because it encompasses
several application areas. Sinte the domain language in effect is a
specification language, it would have to be a very large language to capture
all the different application knowledge necessary to specify the system. The
conclusion was therefore that this type of system will have to be expressed in
terms of several domains at the top level. This is discussed further in the

other report on this study.

If the system is specified in terms of several domains, the problem of how
these various parts shall communicate arises. It is conceivable that some
parts that are typically "ome—of-a-kind"™ applications, will be most efficient
to program in the implementation language. This may make the problem of
communication between the different parts evemr more difficult. The domain
analysis done suggests a type of interface for that domain. But, the
suggestion is not very elegant since it takes a lot of space and work to
specify the interface and some low level constructs. The components

(refinements) to implement it, are not developed and tried out. The solution

8 24 June 1983

Specification of overall
system

.
¢

of system in
in A

pec. for par?\ pec. for par
of system in : of system in

\domain C

omain B

‘?-fs; q(-:s;-’.
nterfacing ? Interfacing ?

Figure 3-1: Large systems has to be specified in terms of several
domains

is not a gemeral solutiom either. The problem is therefore basically
unsolved. In addition, there is the related problem of how to represent the

total system structure.

One may argue that "large systems" (as used above) need not be built using
several domains at the top level. The decisions during refinements may in
many respects be viewed as adding to the original specification written in the

domain language. One could therefore conceivably start off with a

L] L

9 24 June 1983

specificatiorn of the systems in a domain that in very broad lines described
the system. The specification for the different domain areas would then be

added on as choices made during the refinement process.

However, guiding the refinements Dracq does, is different from writing a
specification in a domain language. The refinement mechanism as it is today,
relies on a close interaction with the machine doing the refinements and some
understanding of the Draco mechanism. Decisions have to be made there and
then and committed. There is not any possibility for backtracking, except for
starting all over again. The creation of a specification is a complex
process, It is probably done better when done in a manner allowing the
builder to reiterate and change as the specification develops. The refinement
mecharism 1is therefore not a suitable means for giving the system

specification.

If instead of interactivly guiding the refinement process, the system
builder could write the guidelines using a domain language, this situation
would change. In a way this could be a further development of the strategy
mechanism, If this was made possible, a "large system” may be expressed in a

hierarchy of specifications using Draco domain languages.

Testing is another problem that probably will show up using Draco in the
present form for real-time, embedded systems. These systems include special
purpose equipment and interfaces. This does mean that there will be a need
for testing new components fairly close to machine level. Even if it should
be possible to test components reasonably well as freestanding parts, they may
have undetected faults, or the hardware may not function quite according to
specifications. The need for testing at this level may (will) therefore arise
after systems are built. This appears very difficult to do the way Draco

works today.

Draco will probably increase productivity dramatically. However, refining
the original specification is still quite a bit of work. Therefore, if a

minor change is done in the specification, it would be desirable to be able to

[S

) S

- [

) L) L .7

7

L] E_i K.]

.1

10 24 June 1983

Total system
specification

/

Spec. tonlin(
domaln A ’

Fi
& o e s

|
1
I
]
I
|
[
!
|
l

l
|
{
t
l
l
1
!
1
l
!
i
|
l
)
l
}
I
|
)

\
conteal /rSpec in
'(N\ domain C

-~ -

suofieor3foads £q pIT[0IJUOD SIUIWABUTIAY

Figure 3-2: A suggestion for representlng large systems as a
set of specifications written in dszerent domain
languages.

replay the refinements without any interaction for all those parts unaffected
by the change. This is not possible today. This is a hard problem to solve.
Praco would have to determine the effect of the change to see what could be

replayed. But, from a Dracc user”s point of view, it is certainly desirable.

1
—

. W

i 5 L]

| GHMAN S S

.

11 24 June 1983

3.1.3 The Draco Toolset

Draco is basically a set of principles and 2 mechanism for implementing
these. In addition, a set of tools is provided to aid the user of Draco.
These tools are themselves made using Draco. The tools used during the study
have been those for defining the domain language syntax, namely the parser and

prettyprinter builders.

The power of these tools is very good. It has been very simple for a
person (the author) without prior experiemce in building parsers, to comvert
the syntax definition into a working parser. The same applies for the

prettyprinter.

It was originally thought that these tools could be used without an
understanding of some compilation techniques. The experience is that this
does not hold true. As Draco is now, it appears necessary to understand at
least what a parse tree is and how the transformation and refinement
mechanisms work; at least in principle. A domain specialist without this
knowledge would have difficulties creating and using a Draco domain without
this understanding. The documentation and perhaps the user interface could be

improved to simplify this.

The domain analyst and domain builder does not necessarily have to be the
same person. However, the domain analyst will probably need this
understanding of Draco to be able to communicate with the domain builder. It
is also questionable how efficient the splitting of the two jobs between two
persons may be. Draco does not provide any formalism for communicating
between the analyst and builder. What is provided, is a mechanism for the
analyst to record in a formal manmer the results of the analysis. If it is
difficult to find people who can cover both the application and the sufficient
understanding of Draco, themn it is probably better to provide more tools in

Draco and/or have a Draco consultant to aid the analyst build the domain.

Given the necessary insight, the tools are simple to use. There is of

course some cryptic parts which probably can be accounted for by the fact that

e Y s B S R S

d

vy

o B o

| S

"
“

E !

| D

1

..

-

o

i_J

™ =

e

C

12 24 June 1983

it is a research project. The error messages especially, could do with some

refinements.

There are some additional tools and features that may be desired. Some

suggestions gre listad below:

- Some simpler, hopefully semi-asutomatic means for generating error
recovery blocks in the parser. The parser made for this language
has no error recovery because it would have taken a large amount of
work to implemexnt.

- A syntax directed or assisted editor (or generator of such) using
the parser and prettyprinter definition for the syntax defimition.

- A better means for checking consistencies of specifications written
in a domain language. At the moment, some simple checking can be
done by the parser using the "USE" and "DEF" functions. However, a
need is felt for being able to specify stronger constraints on the

input. One example is the "strong typing"” defined in some
programming languages. Other types of static amalysis would alsc be
advantageous.

- An improvement in the user interface during transformations and
refinements. Instead of looking at a printout of the intermal form
tree, the user should see the instance she/he is at in the tree and
the surrounding as a piece of code in the language for the domain
this ipstance is in. It would be nice if it looked to the user as
she/he was moving round in a piece of code rather than an internal
form tree. (For most application specialists, a tree is something
that grows out in the garden or forest.)

|

| S

|

| S U R G

1
i

| SN R

— &] 2 s .0

13 24 June 1983

3.2 The Analysis Done

The analysis done resulted in the definition of a domain language for the
part of ship-borme gun control systems kmown as the tactical plot. It
resulted in a parser and prettyprinter definition. The tramsformations and

refinements are not defined, but the graphic components are described.

Figure 3-3: A tactical display picture

The work started off with modelling the domain using SADT [Ross 771.
Thereafter, quite a bit of time was spent on deciding upon the form of the
language. It was difficult to decide upor what kind of abstraction it should
provide. Most abstractior of the base machine limits what the user can
express as discussed by Siewiorek and Parnas [Parnas&Siewiorek 72]. On the
other hand, one does not want to burden the user with ununecessary decisions on

how functions should be implemented.

The two types of languages considered were a procedural form with powerful
primitives relevant to the application and a nom—procedural specification

language. The procedural type would be somewhat similar to conventional

e L

O OO Y £ .,

S B b}

L.l

14 24 June 1983

programming languages in structure, but embodying functions like
transformation, clipping, frequemcy of update, and knowing about basic data
types like real world coordinates, and velocity. The system builder would
have to specify how the datz should be processed: What objects there are and
how they should be represemted. This would clearly be the most powerful
language in terms of the range of systems that could be represented and range

of implementations.

On the other hand, it was felt that the information on what kind of objects
are shown on a tactical display and how they are represented, is part of the
domain knowledge. Furthermore, it should not be the concern of the user of
the domain language how the data are processed to genmerate such tactical
plots. Therefore it was decided to define a non procedural language along
these lines. The system builder can define which objects are to be included
from a set of predefined objects (targets, guns etc.). The basic shapes of
the graphical representation is fixed, but the system builder specifies some
parameters and conditions for displaying and colouring. Bow the processing is
done will be determined by the components (refinements) for the domain and
need not and capnot be controlled by the specification written in the
language. The language does provide some limited facilities for defining new

objects and their representation.

The approach chosen does necessarily limit the range of systems that can be
represented. It does in many ways resemble an application program gemerator
input form. On the other hand, it was difficult finding a set of useful
primitives that could be incorporated in a procedural language such that it
would both be easy to build tactical plot subsystems and giving the
flexibility to define any kind of objects and graphical representation for
them. Flexibility will very often mean increased burden on the user of the

language.

The aim has been to use the terminology of the application. It is hoped

that the part dealing with the specifications giving parameters for the

.] 7 [

: S

| UMD B GINNUD B SUNU B GUUED D SUNUE B UUUND B GUDHES DR OUUDED SRR SRONIR B |

1
-

L.

15 24 June 1983

graphic representation and the part defining the conditions for displaying and
the colouring, should be readable for the customer. (These are the
"graphic_rule", the "task rule"™ and part of the "configuration_rule" in the
syntax definition.) These parts of the specification written in the domain
language, could conceivably serve as formal specification for the tactical

plot in the comtract with the customer. This is of course a personal opinion.

However, the language has also to deal with the previously mentioned
problem of the communication with parts written in other domains. This took
quite a bit of work. It takes up quite a bit of the syntax. The first four
sections (configuration rule, world_model_rule access_rule and command_rule)

deal primarily with this. It is not felt that this is solved satisfactorily.

The form chosen for the language has led to a very large syntax definmitionm.
All objects of the domain have at least one syntax rule. The volume has
further increased by the attempt to make the specifications written in this
language readable for the domain specialists., This means that the syntax
hardly can be expected to be learmed by heart by any system builder. On the
other hand, the syntax has not a let of recursive constructs leaving a wide
variety of combinations open. The syutax definition can therefore best be
used as a2 guideline the user of the language keeps in front of her/him while
writing the specification. It would be even better if the syntax was provided
as something like a template or a syntax directed editor. (A syntax assisted
editor that allows the user to have illegal comstructs hanging around while

editing, is probably more user friendly than a strict syntax directed editor.)

Most 1likely there are some errors and inadequacies in the language
definition. Some of these will probably be evident when the transformations
and refinements are implemented. Some weaknesses are Kknown. The syntax
definition does for example, require an exact number of spaces between the

words in the strings between quotes in the syntax definition.

The work preceeding the language definition itself was reviewed by a couple

of persons with knowledge in the domain. The actual syntax and the examples

= —

!
Fi

—) L B

i

L

]) e]

L. =

16 24 June

1983

target graphic:

vector length = 180 seconds ;

length limit = 50 knots ;

time between history points = 180 seconds;

number of history points = 6;

alpha-numeric is [digit(l..4) = target(number);l;

target symbols:
[friend,submarine = symbol{((are, -5,0, 0,-5, 5,0));
friend,surface = gymbol((circle, 5));

cursor graphic:

cursor(l):
cursor symbol = symbol({vector, 2,0, 10,0){(vector, 0,2, 0,10)
(vector, -2,0, -10,0)(vector, 0,-2, 0,-10));

true motion = pb_true motion;
center cursor = center_cursor;

own ship to cursor = false;

cursor to own ship = false;

cursor movement X = cursor_inc(X);
cursor movement Y = cursor_inc(Y);
-

The tasks are:

when command is pb_display_only_hostile

then
display all target where target_category is hostile
every lsec, priority 2;

otherwise
display all target every lsec, priority 2;

»
when command is pb_colour_hostile red
then
colour all target where category is hostile colour(l);
colour all target where category is not hostile colour(2);
otherwise
colour all target colour{2);
3

Figure 3—4: Part of an example witten in the domain language. It is

taken from the graphic representation and task definitions.

written have not been reviewed by any other specialist in this domain.

should be dome if the language should actually be implemented.

- Dot o

— [

il

-

| I

| S

T/) Y T .0 O o .o

I—

17 24 June 1983

3.3 Applicability to Real-Time, Embedded Systems in General

The study done has been applying Draco to a particular domain within the
field of real-time systems. It is fairly simple to see that it can readily be
extended or changed to cover the domains of tactical plots for other type of
systems than ship-borne gun control systems. It covers very many of the same
aspects as found in the tactical plots of simple CCIS systems used aboard
ships. Other CCIS systems have different and more extemsive functioms, but
they are not that different that they could not be represented by an
elaboration of the present domain or a new ome along these same lines using

Praco.

Tactical plots represent one application, but real-time, embedded systems
cover much more., Part of the purpose of this study was to try out Draco om a
domain from this field. The results indicate that it can be used. It is
interesting to comsider whether it has wider applicability im the real-time,
embedded field than this one domain demonstrated here. To do this, it may be

useful to consider some of the characteristics of such systems.

Real-time, embedded systems are often thought of as a very special field of
computer applications, "They are difficult with a lot of special purpose
processing, rigid constraints and a lot of low level bit manipulation. They
are best coded in some low level programming language, preferably assembler,
where one has full comtrol of what goes on without the confusion introduced by
some higher level tools." This is the impression one may get from observing
what goes on in the field. The contention is that this is not so. There are
certainly some aspects of the field that are especially difficult snd requires
special attention. But, a large portion is not significantly different to

other computer applications.

The following are some characteristics that it is believed hold for many of

the real-time embedded applications and the software development for these:
- Real time response.

— Embedded.

]]

| S

| S

— [] 0 C 3O e,

k1 L] (7]

18 24 June 1983

~ Large systems in the terms of Belady and Lehman.
- Implements advanced technology.

- Implemented by application specialists {rather than computer
scientists)

There may be more, but let us consider these.

Being real time means that a system has to process information fast enough
to react to and/or control events in the outside world in a time frame that
permits the real world events to be affected by the system. This puts
constraints on how long time processing can take and may also require
synchronization with externsl events. In gemeral, there is only a small part
of the system that has rigid time constraints. Even these may not always be
that rigid. Tt is often sufficient that these can read a real time clock and
modify the calculations accordingly when they comtrol and/or momitor physical
processes where time is a factor. There are also many times when there is
very little freedom in when the results of computation must be ready.
However, this is not really all that difficult a problem. It requires simple
synchronization techniques and also that one does not have operating systems
that suddenly shuts the world off for some seconds while it goes off on its
own for some garbage collection or similar internal tasks. The real problem
with the real time aspect is often too many tasks for too little computer

capacity.

Embedded meams that the computer and software is part of a larger system
whose prime purpose is not the procesaing itself. It generally leads to a lot
of special purpose equipment and interfaces to them that has to be handled.
The variety is probably much larger than need be. A lot could be gained by
some careful analysis of this field. It is for example difficult to see that
there is any good reason for representing digitized analogue signals (with the
same resolution) in up to four different ways except that this is what IC
package producers provides. There is also an enormous variety in “standard'

protocols for communicating with equipment and interfaces plus all the

i] L] T/

/) 3 3

[oo BN conem BN oy BN ovmums NN s BN auns BENNY s BENNN wee NN oy

19 24 June 1983

equipment that does not follow any other protocol than its own. We will
probably have to live with this situation for some time to come. Some special

purpose equipment will probably always have to be handled.

This will require that we have the ability to deal with machine near
details. It is important to note though, that this, 1like the real time
aspects, only affects a relatively small part of the software. It can

probably be even less than it is today by some careful hardware design.

"Large systems" relates, as previously mentioned, to the variety within the
system. A system is large if it essentially lies outside the grasp of a
single individwal and requires an organized group of people to desigm,
implement and maintain it [Belady & Lehman 79]. This is not the case for all
real-time, embedded systems, but it applies to a large portiom. This does
lead to added complexities as is noted by Belady and Lebman, that is not well
handled by today”s methods. This is a strong argument for applying methods
that can provide more rigorous contxol of the software structure and higher

level definitions of what the system should do.

The restricted resources of the embedded computers both im time (processing
power) and memory, often leads to the choice of low level languages or
assemblers to allow optimizations. It is questionable whether this is the
correct choice. It may allow optimizations at the detailed level, but the
gain can easily be lost several times over in inefficiencies at the
macroscopic level. It is difficult to express higher level constructs and

controls in assembler or low level languages.

Many of the systems in this field are implementations of advanced
technology. This means that they will have a kind of experimental flavour.
There will be a lot of cut and try with changes to the system. This may mean
that some domain knowledge will be difficult to capture in a Draco domain
language because the domain itself is not fully understood. On the other
hand, it increases the usefulness of having powerful functions for building

systems and redoing them when needed, as Draco provides.

i) L.

| wons S oot BN smu SENNE vt DR s B mown BERN ovms BN oune RN cvmn DR swus DU cxont Y ssmeu BERNY anoue SRR svumn BN mnow S s

20 24 June 1983

The last aspect noted, is that the people writing the software for these
types of systems very often are application experts rather than computer
sclentists. This is only an observation based on the impression of the author
and an informal survey that was donme in Norway. However, as far as this is
correct, these are people who primarily regard the software as a tool for
implementing their applications. The reluctance to move away from assembler
amongst some, is probably part fear of change, part lack of understanding of
the concepts presented to them by the computer scientists in the form of new,
even more complex language comstructs that appear to bear little relevance to
their applications. Draco has the advantage here that it aims at providing

domain languages that are directly relevant to the applicationms.

This section has tried to argue that real-time, embedded systems for a
large part are not all that different from other computer applicatioms. Parts
of the systems are special and may require special treatment. Most of the
domaing, however, are not all that different from other computer applications.
It will therefore be reasonmable to expect that the results from this and other
studies on using Draco will apply to other real-time domains as well.
Furthermore, since many of these must be denmoted as large systems, it will be
advantageous to introduce tools that makes the complexity more manageable.
The people building the systems should also be aided by having a tool using
the terms of the domains they are experts in rather than traditionmal

programming languages or assemblers.

All real-time embedded systems do not come under the descriptioms above. A
notable exception is those that control very critical processes and require
ultra high reliability. These are given quite & bit of attemtion by the
research community today and do probably require other types of tools than

what Draco provides for the development.

The larger portion of the real-time systems though, are developed today
with low level tools and ad hoc methodology. There is a large room for

improvement as has been noted by both the DoD“s Ada and STARS programs [DoD

| S

..

— T /| Y £

IO R U DR OUNU B SN D SN D AN B SRS

21 24 June 1983

!

83]. It is important that the methodologies and tools applied cover the whole
life cycle [Freeman and Wasserman 83]. Draco does set out to cover the life
cycle (although not all aspects). There are some problems left, but there is
good reason to believe that approaches like Drace can drasticly improve the

development and evolution of such systems.

U e

)]

3 e e

| sooun B oo B st SN e NN Aot B S

| I

22 24 June 1683

4. A Procedure for Doing Domsin Analysis

The domain analysis done involved a2 lot of cut and try. This can probably
not be avoided. On the other hand, the experience gained in doing this,
suggests some order in which things can be dome. This is illustrated in the
following SADT model. The steps are further described in the text following
the diagrams. This is not necessarily the only or even the best procedure,

but it appears to work based on the experience gained from this study.

- 62 "5.5 s, C.m,\ddc.\ r.?«J&SQ °vvIqT 9Qq o-F ?3\&5.&
= ‘HIGWNN & EERIENY _a:3a0n]
m vik*@m .un._.e::_ .um‘\wqx_d x‘.dot.@ﬁ u&\%wﬁy\.i.a\ﬁw u,wvn ._Q ra.w,md&&?\.wh .\NVo«x\émn:Mh
—t r ?omo - W Tiw 2
9 .#.uﬂ\\.ﬂ.!..\v\o ¢ pm Sau.&hm.m. By ey on SQ.GNOHWM.C.\MVM H»\v“ﬂ.k\“.u M.W.
rw. Mxh \\Gr.ﬁ r....v.v:_o\Q D.....Q\n. ,\Q\ .w&ao\vv.v?\ v w\.u,wk\hx\\w nwk .,nwm..un_\c.x.Q
S H.;.derw x...cv&o\ oy h,r.?o»u uosdad Y ..\:.uoa\\u.v.»_
“*3) oo
UN QUEM
\&NSM.L
, w%&i%!\vw W 2wiop fo
b 1ysee Q3 A
it < n»u%\wsv\ Mivwmo /
% ¢ \ * Q
B b .ahb\\#-«gﬂw “o GUGI&Q QQ &0%3;
ac...\uomfwvx.oqu < es\uuu.m_ﬁ.w
2Evn o vmc:&.aumo som|a2fo, waz68s
% W2 Biojo tso\ . . \ﬂu‘ pdouﬁ e
Wiveid v so% T e $ oS tvﬁimd,ﬁ
Symy |smertrag so rosw\\&e 7217
g\ ﬁvs.-\\ O*Ot
w | | - SRR
| NOLLY D Tand]x] OL 6 8 L 8 6 v € Z ['SA1ON
svnory “ G3aN3IWN0I3H| 4]
1dvadaphe]l ¢ 8- : ?W\S\ v Oy @ :
:1XILNOD j3Lva TELLED ONINHOMP] € & ;wﬂhﬂ%ﬁ»@u - .m.&wvrshmq:mh m "wwuhwhm 1v a3sny

Cy 233 O Cy OO0 3 3 ¢

Y5 "YGLEQ SSEW Tweytep Tpeoy PUod NG) 0P "0 YR)OS GG (B W0y
G1/68601% WHOA .Z(EO(-D@._.Q.Qm

d OO O O O 3O O 3 ga

j

g

24 June 1983

24

/o _“.w.m.w:z w.uw% ° V.V\ r...wg\uﬂ. Q&d&ﬂ aﬁmd.:h oY > xmov..:.“ﬂoz
*00.\00 Y'Y
2 D10 50 eIvig —T .
< W wh@s P&Q
ﬁsb —go.jwu_ idadd 1 D
AN VWKOU mﬁuve.a‘“na\ao bv«w«dﬁx&dt\w Ty
ED |
>%d
J) LA F 110) J Y0P
ﬁf .ué“{.o? NQ N._\ XD u.U@\Q —.-‘-N%\onm.” Nnﬁ Qﬂv\”.%
L.w. m».\w. pr b L T &nuobwﬁ \
£ . \vu»::..
uﬁcsb:..%&c r:_om. e 4 T
: . ?....c!\toNu L . r.nezaoﬂe
hao u.!o.ﬁ svrg \-\ ~M .»\o\ubr LAl MO%QO\)\ i< %0 dm‘wvuﬁ.\ﬁoﬂk .N.H
-+ 2
) i
a::wm\ds ~
) W ! adoss |
0 < V2 {adods pwo wo xmmorl, apoxm
h Y .\3@.00 x.gJN .C—:&Y WS..M&.Q —*UW%TW &H
\,_ 0 i) o
Hoi) divss9p W rawmeap m sy yone Jusm i ey Sway au\.- TS o8
v uuwtd 2
280 wopmns
rre u.!qvu»u
sV 1! W7)
awreerl o
K | NOLLYIIIgNd]* OL 6 8 Z 9 S v € ¢ 1 SIION
= = | Q
- ! g = 20 P :
:AXALNOD f3iva ELLED ONINHOM £ -9 Iwnp “mnmm - ?N%vﬁmuiwm.m"w%__wu“ :Av a3snj .

WSI PG LZ0 SSRWN WeWIIRAN (PEDY pUOd L] DOk O R HYS GLGL 0 W0
5476 B60LS WHOA §¢:04.0®PO¢m

1

—

— 1

|

) L

[s DU sume BN snut BN aown

—

25 24 June 1983

The underlying idea of the procedure is that the domain analysis requires
that one develop a thorough understanding of the domain. The starting point
is a2 domain expert doing the anmalysis. Since he/she is already an expert, it
should not be necessary to develop any further understanding. It is not quite
that simple. Even a domain expert will have good use of tools for organizing
and recording the knowledge. In addition to aiding the expert itself, such
tools will make it possible to communicate the ideas to other people with

knowledge of the domain and get feedback from these.

The domain defipmition using Draco, is in itself a tocl for recording the
domain knowledge. The purpose is to do this so that the informatiom can be
reused. For some domains the knowledge is probably best recorded directly as
a Draco domain definition. For this domain studied here, and probably many

others, some steps before the domain definitiom itself is advantageous.

The first, fairly obvious step, is to determine what the domain is. One
needs to determine what it should cover and the context to other domains. The
tactical plot domain studied here covers omnly part of a larger system. In
this case, it is very important to determine what is within the domain and the
relation to the rest of the system. Other domains may cover complete systems
like reservation and information systems for travel agencies. But even in
this case it is important to determine the range of possible systems and
features onme will cover. This is an iterative process, and the defimitiom of
what is covered by the domain, will be refined as the amalysis proceeds. (The
end product is the objects and operations in the domain and the relation

between them, as expressed by the domain definitionm.)

In this study, a model of the domain of the whole system was first
developed using SADT. It was a good tool for this purpose amnd it allowed the
work to be reviewed by several other people and thereby giving very useful new
input and ideas. Other applications may have other modelling techniques that
are more known or .espec:i.ally suited to the field. Whatever the technique is,

modelling is a useful way of organizing and improving the understanding.of

]

L

—/ T o

T e e e OO O e, O O ko . o

26 24 June 1983

applications.

In this case, the type of systems considered was found necessary to
represent as severzl domains even at the top level. In the other report om
the analysis [Sundfor 83], it is argued that this may be best done according

to the principles advocated by Parnas [Parnmas 79].

Once the extent and context of the domain has beern reasonably well
determined, it is time too take a closer look at the domain itself. Here
again it was advantageous to develop a model both for organizing one’s own
understanding and for communicating the ideas to others for them to review and

giving their knowledge.

The next step suggested, is deciding upon the form of the language itself.
This was the stage that gave the most problem in this study. The first
attempt was writing down the syntax straight away. This did not work out.
First of all, with little language theory and parser builder background, the
attempt socn ended up in a lot of petty_language problems. Secondly, both the
form and the type of abstractioms to be used were only vague ideas. The next
attempt was sitting back and tryimg to envisage the situation of the user of
the language: "If I was going to build a system using this domain language,
how would I like it to be?". There is nothing revolutiomary in this approach,
it is called writing the users manual before building the system, as was
pointed out by Peter Freeman [Freeman 83]. This is indeed what was done.
But, even before that, a few examples were worked out writing system
specifications the way the imagined user of the domain language would like to
do it. The user”s manual was written based on these examples and the ideas

behind them.

The form and abstractions of the domain language are not simple to decide
upon. In most cases there will be compromises. Very domain-specific
constructs will may make it simple to define systems. Oun the other hand, they
probably limit the range of systems that can be constructed. The domain

analysis is a very expemsive task, so there are also limits to how much time

| SR st B S

SRS WU R SR

[vos SRR s B s B ouwn RN vuuin BENE oomp

S

27 24 June 1983

one can spend at perfecting the domain language. A useful language is usually

better than a "nearly finished," perfect language.

The final step is the definition of the domain language itself using Draco.
The syntax definition of the language is recorded in the parser definitiom.
In addition, a prettyprianter is needed to print out the internal form. The
source to source refinements provide simplifications of constructs in the
domain while the refinement actually implements the components of the domain
by refining them into underlying domains. These steps are described in the

Draco documentation.

28 24 June 1983

5« Summary
The work done in this study has been:

— The domain focused upon, was narrowed down from real-time systems in
general to ship borne gum control systems, and from there to the
tactical plot subsystem of the gun control.

- The gun control system domain and the tactical plot domain were
modelled using SADT. The modelling was dome both to organize and
refine the knowledge of the domains.

- A domain language was constructed through several iteratioms of
trying by hand different constructa and writing a user”s manual.

- The language syntax has been defined in the Draco system by building
a parser and prettyprinter for the language. The semantics are
represented by the domain model and the prose description. The
semantics have =not yet been defined in Draco, i.e. the
transformations and refinements are mot built.

- The parser and prettyprinter have been tested out on an example that

was developed during the design of the language.

This domain analysis covers a domain from the real-time, embedded
application. There are some problems not yet dealt with by Draco that has to
be solved. Apart from these problems noted in the study, Draco appears
feasible for this real-time domain. Furthermore, most of the real-time
domains are not so special that they caonot use methods found useful for
software developments in other domains. It is therefore reasonmable to expect
that as far as Draco can be demonstrated as being useful applied to other
domains, it will be useful to a large part of the real-time, embedded domains

as well.

The form chosen for the language of the domain, is non—procedural with s
lot of domain specific comstructs. It aims at being descriptive rather than
prescriptive. It looks very little like traditional {(Algol-like) programming
languages. It is more meant to wmirror the way specifications for tactical
plots actually may be written in & comtract with the customer. In additiom,
it deals also with the basically unsolved problem of interfacing to other
parts of the systém. This complicates the syntax. The syntax definmition is

very long and may therefore be hard to use. Some simple tools directing the

| S

i] 3

L L b)) g]

- E3

29 24 June 1983

user would help in such a case.

The domain analysis itself does involve a lot of work. A procedure is

suggested for doing this based on the experience gained in this study.

It is worth noting that a domain analysis is mot something that is peculiar
to Draco. In my opinion, anybody building software systems would gain from
analyzing the domains they are working in. What Draco provides is a means of
recording the vTesults of this process. In addition it provides a
mechanization of the reuse of the results. Even without this mechanism, the
recorded results of such an analysis can be used. It conveyes a lot of
information on the domain and can even be considered used as a way of formally

specifying systems in that domain.

Based on the experience gained in this study, the following work on Draco

is recommended:

= Mechanisms for handling the interfacing between parts of large
systems specified in different domain languages.

- Tools for testing code in systems built using Drace. This may in
particular be mnecessary for testing special purpose interfaces in
embedded systems.

~ Refinement replay mechanism.

- Hore static analysis tools that can be incorporated in the
languages.

= Syntax directed or assisted editor working from the parser and
prettyprinter definitioms.

- Automatic or semi-automatic gemeration of error recovery blocks in
the parsers (by the parser builder tool).

= Improved error messages from the Draco mechanism and tools.

— Improved user interface during transformations and refinements.

G S S Y vy B vomnt S s RS

i

— & /o g e

30 24 June 1983

1. A short introduction to Draco

It has beer a common practice to name new computer languages after stars.
Since the system described in this manual is a mechanism which manipulates
special purpose languages it seems only fitting to name it after a structure

of stars, a galaxy. Dracol

is a dwarf elliptical galaxy im our local group of
galaxies which is dominated by the large sepiral galaxies Milky Way and
Andromeda. Draco is a small nearby companion of the Milky Way (1.2x10° solar
masses and 68 kiloparsecs from Earth). This small size and close distance to

home is well suited to the current system which is a smsll prototype.

I.1 The Draco View of Software Production
The Draco system addresses itself to the routine production of many systems
which are similar to each other. The theory behind its operation is described

in detail in [Neighbors 8Gl.

Three themes dominate the way Draco operates: the use of special-purpose
high-level languages for the dowmains or problem areas in which many similar
systems aré needed; the use of software comporents to implement problems
stated in these languages in a flexible and reliable way; and the use of
source—to—source program transformations to tailor the components to their use
in 2 specific context. The basic steps in the production of a specific system

using a Draco supported domain—specific high—-level langusge is as follows:

1. An analyst with experience in developing many systems in a certain
problem domain decides that the domain is understood well enough to
define a language suitable for comfortably and easily describing
other systems in the problem domain. This person is called the
Domain Analyst and the language described is called the Domain
Language. The Domain Analyst describes the domair and its internal
form with the parser generator part of the BUILD subsystem of Draco
which is described in the Draco user”s manual.

2, Once the Domain Analyst has described the extermal and internal
form of the domain them how program fragments in the domain should
be printed so that users find them easy to look at and accurate inm
their meaning must be described. This is called prettyprinter

1Draco is Latin for dragon

4

I wous IR ot R st BEENR sunm NN oo SN wooes BERN sweses

4.

9.

31 24 June 1983

generation and it is done by the Draco BUILD subsystem.

The Domain Analyst wmust provide simplifying relations among the
objects and operations of the domain. These are used for
simplification and optimization of programs in the domain., These
simplifications are accepted in terms of source-to-source program
transformations by the BUILD subsystem which forms them into a
library of transformations.

Finally, the Domain Analyst must prepare a prose description of the
meaning of the operations and objects in his domain.

This prose description is turned over to a Domain Designer who
specifies components for the objects and operations in the domain
which refine the objects and operations of one domain into other
domaine known to the Draco system. These compoments are formed
into libraries by the Draco subsystem. A component is a set of
refinements each capable of implementing a domain object or
operation under certain stated conditions while making certain
implementation assertions.

A new system which can be described in a Domain Language known to
Draco can inherit some analysis, design, and coding from the Draco
library. The statement of the system to be comstructed is cast in
a Domain Language. The Domain Language program is then turned into
an internal form by the PARSE subsystem. This internal form is

then given to a System Specialist,

The System Specialist interacts with the transformation and
refinement subsystem of Draco. The basic operation in this phase
is the selection of an appropriate set of scftware components to
implement the operations and objects in the domain which are used
in the problem statement. Then these components are specialized by
program transformation to the problem at hand and then separately
refined into another (or the same) domain and the cycle begins
again. The refinement subsystem allows the definition of
refinement tactics capable of removing the burden of answering low-
level questions from the System Specialist.

The process the System Specialist uses to refine the problem is, of
course, not strictly top down but the refinement subsystem keeps a
record of the process which makes it look top down. When the
program is in an executable form it is printed out by the System
Specialist and either acceptable or the specification cycle begins
again with the existing Domain Language program.

The refinement history of z program may be examined by a user of
the EXAMINE subsystem which states what refinements were used in
the production of this program. A higher—level description of all
parts of the program to whatever level (up to the original Domain
Language) always exists in the refinement history. It is hoped
that these higher levels of abstraction of an existing program will
be useful in understanding the program during the maintenance phase
of its lifecycle.

o 3 o 2

— T

[T 33 33 K

32 24 June 1983

The process described briefly above is dealt with in more detail in

[Neighbors 80] which presents an sapTZ model of the process.

2SADT is a registered trademark of SofTech Inc.

- o o

s B s

_.

=

T/

33 24 June 1983

REFERENGES

[Belady & Lehman 79]

[DoD 83]

Belady, L.A. and Lehman, M.M.

The Characteristics of Large Systems.

In Wegner, P., editor, Research Bjirections in Software
Technology, chapter 1, pages 106-131. The Massachusetts
Institute Technology Press, Cambridge, Mass., 1979.

U.S. Department of Defence.

Software Technology for Adaptable, Reliable Systems (STARS)
Program Strategy.

ACM SIGSOFT Software Engineering Notes , 8(2):56,108, April ,
1983,

[Freeman and Wasserman 83]

{Freeman 82]

[Freeman 83]

{Neighbors 80]

Peter Freeman and Anthony I. Wasserman.

Ada Methodologies - Concepts asnd Requirements.

ACM SIGSOFT Software Engineering Notes , 8(1):33,50, January ,
1983,

Freeman, Peter and Neighbors, James Milne.
Reusable Software Engineering, a Proposal Submitted for
Consideration by the Natiomal Science Foundation.

Peter Freeman.
Private communications.

Neighbors, James Milne.

Software Comstruction Using Components.
PhD thesis, UGCI, 1980.

{Parnas&Siewiorek 72]

[Parnas 791

[Ross 77]

[Sundfor 83]

Parnas, David L. and Siewiorek, B.P.
Use of the Comcept of Transparency in the Design of

Hierarchically Structured Systems.
Technical Report, Carnegie-Mellon Un.., July, 1972.

Parnas, David L.

Designing Software for Ease of Extemsion and Contraction.

IEEE Transactions On Software Engineering , SE-5(2):128,137,
March , 1979,

Ross, Douglas T.
Structured Analysis(SA): A Language for Communicating Ideas.
IEEE Txansactions On Software Engineering :?, Jamuary , 1977.

Sigmund Sundfor.

Draco Domain Analysis for a Real Time Application; the
Analysis.

Technical Report RTIP 015, Department of Informatiom and
Computer Science, University Of California, Irvinme , June,
1983.

