
Transforming Experiences

James M. Neighbors
Bayfront Technologies, Inc.

1280 Bison B9-231
Newport Beach, CA 92626 USA

+1 714 436 0322
James.Neighbors@BayfrontTechnologies.com

ABSTRACT
This paper describes our experience with program
transformation systems from 1974 to the present. It
provides a rationale for how our use of the technique has
evolved.

Keywords
Transformation, optimization, refinement, domain analysis

1 EXISTING PROGRAM IMPROVEMENT
In early 1974 I worked with Tim Standish on "Interactive
Program Manipulation" to improve existing programs using
source-to-source program transformations. We did not
consider changing the meaning of the program. Our method
was to apply correctness-preserving transformations one at
a time. This work resulted in a catalog that listed low-level
compiler-like optimizations aimed at an Algol-level
programming language. A prototype source-to-source
transformation system was built and it was populated with
some of the transformations from the catalog. Very quickly
we found it tedious to apply transformations one at a time.

2 EXISTING PROGRAM SPECIALIZATION
We wondered why bother performing these transformations
at all? It was nice to see a clarified program but was really
much gained? Well in one case we did see huge gains.
That was when we added an external assumption to a
program and then transformed it. The prototype source-to-
source transformation system was renamed �Specialist� and
we documented our experiences [4]. Source-to-source
transformations are very powerful at customizing a general
program under a specific case.

3 DOMAINS FOR PROGRAM SYNTHESIS
Many times with the Specialist system we had the feeling
that we were dealing with the wrong level of abstraction.
As an example, we could transform a matrix multiply
specified as a series of loops into a matrix copy given the
assertion that one matrix was the identity matrix. This
specialization took over 100 low-level transformations.
However at the �correct� level of abstraction, say that of
APL, this would be a single transformation (e.g., A:=B*1

=> A:=B). I did not believe that simple low-level
transformations with a complex planning technology were
the right idea. I believe that using higher levels of
abstraction with simple techniques is the right idea.

In 1978 I started working with Peter Freeman to combine
the ideas of systems analysis, automatic programming,
software reuse, and transformations to specify and
synthesize systems. There were four main groups pursuing
this basic approach: Harvard [2], MIT [8], Stanford [3], and
USC/ISI [1]. These projects were primarily using wide-
spectrum descriptions where one notation suffices to
describe a system from its problem domain to
implementation. I opted to use narrow-spectrum languages
I called domains and defined the idea of domain analysis to
determine their contents [5,7]. I was hoping to get the
�correct� level of abstraction from the domains. The
prototype system I constructed was called Draco [6]. It
manipulates a hierarchy of domains each with their own
notations.

Figure 1 demonstrates the basic concepts of Draco. Assume
a simple language SIMAL with exponentiation and another
language SLISP without exponentiation. Given an instance

simple
translation

 many
operations

[[SUM:=1; TOP:=?y*LN(?x); TERM:=1;
 FOR I:= 1 TO 20 DO
 [[TERM:=(TOP/I)*TERM;
 SUM:=SUM+TERM]];
 RETURN SUM]]

[[POWER:=?y; NUMBER:=?x; ANSWER:=1;
 WHILE POWER>0 DO
 [[IF POWER.AND.1 <> 0
 THEN ANSWER:=ANSWER*NUMBER;
 POWER:=POWER//2;
 NUMBER:=NUMBER*NUMBER]];
 RETURN ANSWER]]

REFINEMENT: Taylor expamsion (?x̂ ?y)

REFINEMENT: binary shift method (?x̂ ?y)

OPTIMIZATION: expX2
?x^2 => ?x*?x

A^2
(*TIMES A A)

SIMAL => SIMAL

SIMAL => SIMAL

SIMAL => SIMAL

SIMAL SLISP

Figure 1. Transformation implementation of exponentiation

mailto:James.Neighbors@BayfrontTechnologies.com

2

of exponentiation in SIMAL figure 1 provides our choices
for refinement. We can use the instance context to optimize
which is valid for all implementations if the enabling
conditions are met. Alternatively, we can use one of two
refinements if their individual enabling conditions are met.
This is a hierarchy of two domains: SIMAL and SLISP.
Our Specialist difficulty was analogous to instantiating the
�binary shift expansion� and then using many low-level
transformations to reduce it to a single multiply. Notice that
the �Taylor expansion� should never reduce to the
multiply. It models exponentiation and so no general set of
equivalence preserving transformations should be able to
reduce the expansion to a single multiply.

4 USING APPLICATION DOMAINS
In the late 1980s I studied very large commercial systems.
They drove me to respect architecture and functional
diversity. It goes without saying that the goal of system
specification is to ultimately obtain a working system.
However, during development many other needs must be
met. As an example the input specification of a protocol
can be used to generate working protocol code, simulation
code, and analysis tool input data all from the same
description. Each workproduct probably has a different
architecture. This reinforces the ideas of variable target
systems and variable implementations. In the 1990s
Bayfront Technologies, Inc. tried these concepts out in the
area of commercial communications protocols and we
believe they were received well.

5 TRANSFORMATIONAL BELIEFS
Every transformation has enabling conditions. Even the
most innocuous of transformations (e.g., ?A*(?B+?C) =>
(?A*?B+?A*?C)) have enabling conditions. Enabling
conditions can help guide transformation because they can
prune choices.

Metalevel planning is necessary. We saw the application
of transformations form into patterns when we applied
them one at a time. These patterns infer plans that drive
these patterns. Applying individual transformations one at
a time is tedious and error prone. Low-level tactics and
high-level strategies are necessary.

Source-to-source transformations work well for
specialization and optimization. It is easier to find and
remove unused generalization than to generalize something
that is specific. The latter requires the addition of
knowledge not in the code being manipulated.

Transform at the correct level of abstraction. The
�correct� level is a level where the concepts you are
manipulating are directly represented. Once again do not
try to infer any knowledge that's already been removed
from the code.

Optimization and refinement are not the same thing.

Optimization works for all implementations of the objects
being manipulated. Optimization does not change the level
of abstraction. Refinements make an implementation
choice, change the level of abstraction, and are irreversible.

Use narrow-spectrum languages rather than wide-
spectrum languages. Wide-spectrum languages include all
of the formal theory languages and general specification
languages. In order to achieve the �correct� level of
abstraction as we have characterized it above, wide-
spectrum languages will have to use abstraction notations.
Once they do, they revert to narrow-spectrum languages
with cumbersome notations.

Reduce transformation mechanism power to achieve
useful strategic planning. If you use incredibly complex
transformations, then it is hard understand what they do.
Worse, it's hard to characterize what they do for strategic
planning purposes.

Architecture evolves as a consequence of
implementation techniques in addition to system
function. There are many ways to implement the same
construct. Inline code, threaded code, and threaded code
interpreters are all valid schemes for implementing a single
component.

Synthesis is easier than understanding. It�s tempting to
search for the right-hand side of a transformation and claim
program understanding. However you must have enough
knowledge to synthesize before you can recognize.

Domains provide education. This is the largest impact of
this work. I never would have guessed it at the time.

REFERENCES
1. Balzer, R.M., Goldman, N.M., and Wile, D., On the
Transformational Implementation Approach to
Programming, Proc. 2nd ICSE, pages 337-344, 1976.

2. Cheatham, T.E., et.al, A System for Program
Refinement, Proc 4th ICSE, pages 53-62, 1979.

3. Green, C., The Design of the PSI Program Synthesis
System, Proc. 2nd ICSE, pages 4-18, 1976.

4. Kibler, D., Neighbors, J.M., and Standish, T.A., Program
Manipulation via an Efficient Production System,
SIGPLAN Notices, 12(8):163-173, 1977.

5. Neighbors, J.M., Software Construction using
Components, PhD diss., UC Irvine, 1980
<http://www.BayfrontTechnologies.com/thesis.htm>.

6. Neighbors, J.M., Draco 1.2 Users Manual, UCI, 1983
<http://www.BayfrontTechnologies.com/manual.htm>.

7. Neighbors, J.M., The Draco Approach to Constructing
Software from Components, IEEE Trans. on Software
Engineering, SE-10, 5 (1984) pp. 564-574.

3

8. Rich, C., Schrobe, H.E., and Waters, R.C., Overview of
the Programmer's Apprentice, Proc. 6th IJCAI, pages 827-
828, 1979.

	ABSTRACT
	Keywords

	EXISTING PROGRAM IMPROVEMENT
	EXISTING PROGRAM SPECIALIZATION
	DOMAINS FOR PROGRAM SYNTHESIS
	USING APPLICATION DOMAINS
	TRANSFORMATIONAL BELIEFS
	REFERENCES

