Baytront CAPE Tools”
User’s Guide

Bayfront Technologies, Inc.
1280 Bison B9-231

Newport Beach, CA 92660
USA

714.436.0322

Bayfront CAPE Todls™
Users M anual
Version 1.5

Copyright © 1993 by Bayfront Technologies, Inc. All rights reserved. No part of this publication or the
enclosed software may be reproduced or distributed in any form or by any means without the prior written
permisson of Bayfront Technologies.

We welcome your suggestions and comments regarding improvements to Bayfront CAPE Tods or this
publication. Changes will be incorporated in new editions of this publication and in new versions of
Bayfront CAPE Tods. Bayfront Tedchnologies reserves the right to make tanges to this product at any
time without notice

The Bayfront CAPE Tods sftware (including instructions for its use) is provided "as is' without
warranty of any kind. Further, Bayfront Technologies does not warrant, guarantee or make any
representations regarding the use, or the results of the use, of the software or written materials concerning
the software in terms of corredness acauracy, reiability, currentness or otherwise. The entirerisk asto
the results and performance of the software is assuumed by you. If the software or written materials are
defedive, you, and not Bayfront Technologies or its dealers, distributors, agents or employees, asaime the
entire st of al necessary servicing, repair, or corredion.

Neither Bayfront Technologies nor anyone dse who has been involved in the aeation, production, or
delivery of this sftware shall be liable for any dired, indired, consequential, or incidental damages
(including damages for lossof businessprofits, businessinterruption, lossof businessinformation, and the
like) arising out of the use or inability to use such software even if Bayfront Tedhnologies has been
advised of the posshility of such damages. Because some states do not all ow the exclusion or limitations
of liahility for consequential or incidental damages, the abowve limitation may not apply to you.

Bayfront CAPE Tods™, Bayfront CAPEGen™, Bayfront CAPEDraw™, Bayfront CAPESm™ and
sand dollar logo are trademarks of Bayfront Tedhnologies, Inc. Other brand and product names are
trademarks or registered trademarks of their respedive holders.

Table of Contents

1. Introduction

1.1. Computer Aided Protocol Engineaing (CAPE).........oi i 1-1
1.2. Communication System Archit@QUIES............ov i 1-2
1.3. Client/Server System Archit@aUIES........coouuuiiii s 1-3
1.4. Realtime System ArChit@AUIES.iiiiiiiii e 1-5
1.5. Bayfront CAPE Architedural MoOdeloouuiiiiiiii e 1-5
1.6. CommuNICating YOUr RESUIESccuuuiiiiiiii ettt e e e e e e e eeeeeaeas 1-7
1.6.1. State TranSition Diagramcc..uiieieiiieee et ee e 1-8
1.6.2. State/Event Transition Diagramc..uiieieiiiiieieeiieiee et 1-8
1.6.3. SDL DIAQaM...cceeeeeiieeie et ee sttt e e e e bb e e e nb e e e anbae e e anees 1-9
1.7. Organization of themanual ..o 1-10
2. Quick Start
2.0, INSEAIIBLION. ...ceeeeeiiie et e e e e e e 2-1
2.1 1. WINdows INSEaIGEION.cceiiiieieiiiiiii e mme e e 2-1
2.1.2. DOSINSAlBHON.ciiieieeeeeee et me et 2-1
2.1.3. UNIX INSEBIBLION. ...t ee e e s 2-1
2.2. Creating the Protocol Definition Language Input File ... 2-2
2.3. Using the Bayfront CAPE TodS for WINAOWS.............iiiiiiiiiiiieiiiieiee s 2-2
2.3 1 FilESUBMENUS.uuiiiie et 2-2
2.3.2. Edit SUDMENUScoeiiiiiiiiiie et e e e e e 2-3
2.3.3. COMPITE MENU ...t 2-3
2.3.4. VIEW SUDMENUS......cooiiiiiiiiiiii e e e 2-4
2.3.5. OPtioNS SUDMENUS. ...ttt e e et e et eebeeseeeeeeeas 2-5
2.3.6. WINAOWS SUDIMENUSevvvriiiiiiiee e eeeeee ettt 2-5
2.3.7. HEP SUDMENUS.......oiiii e 2-5
2.4. Using the Bayfront CAPEGen Compiler (DOS/UNIX).....ccoviiivniiaiiiiiiiieeeiteeeaaaa e 2-6
2.5. Using the Bayfront CAPEDraw Viewer (DOS).......cccuuuuiiaiiiiiiiieeeiiimiaeea e 2-7
3. Protocol Definition Language (PDL)
3Ll OVEIVIBIW L.ttt e ekttt ettt e e e s e bbb et e e e s e e nn e e e e e e e s e s 31
3.2, PDL EIBMENES. ...ttt ettt ettt e e e e et e e s sbe e e st be e e s bemnre e e e aareeean 3-1
3.2.1. Spacing, Comments and Syntax Diagrams...........cccuuvieeeeuiiieerenniieiiiieens 31
322 TAENtITIENS. ..o 32
B.2.3. NUMDEIS. ..ttt ettt e s ae et e e st b e e e e sabe e e s sabeeeneaaaes 3-2
3.3, PDL SHUCIUN. ..ttt ettt ettt e ettt e e e e e e sabe e e s sabb e e e esbbeeesnbemmeeeeannreeeans 3-3
S - 1= J U U TSRO RPTPPPO 3-3
D EVENLS. ettt e e ae ettt en e e e e 3-4
3.6, EVENE MBCIOS.utiiiiiiiii ettt ee et et e e et e e e e e e e s nneseeeeeeeeraes 3-5
7. ACTIONS .o r e e e e e aa e e e e e e e 3-6
3.7.1. Actionson TiIMers and MESSAgES.cc.uuiiiiiiiiiiiiciiiie ettt 3-6
3.7.2. Action Call Sto USEr ROULINES.........uiiiieeiiiiiiiieiiiiieee et ee e 3-7
3.7.3. SWItCN ACHIONS ...ttt e e e e e 3-7
3.8, ACHION IMBEIOS ...ttt ettt er et e e e e e e e e e e e e e eeee e e e e aanees 3-8
3.9. Error Reavery and REPOIMING.......ooiieieeeiiiite e 3-8
310, PDL EXAMPIE.....uutiiitiiiiiiieieieteeeeeeetie e ettt et e e s e s be e e e skt e e e sbbe e e sabbeaeaaesanbeeeannes 3-9
311 PDL RESIICHIONS. ...tttttii it e ettt ettt e e e e er e e e s s i r e e e e s s b e e e e e s neeeeeaans 39
4. C CodeFiles
A1, OVEIVIEIW ...ttt aee et e e sttt e e s st e e e s e sn b e e e e e e annbn s nnrn e e e e e e e nnrnes -1
4.2. Protocol/State Machine Header File CONENES.ooiiieeiiiiiiiiiiiiiieeee e 4-2

4.2.1. StAtE DEfINITIONS. .. cuiieeiiiiii e e e e e st e e e e e saneeaad -3

4.2.2. EVENt DEfINILIONS.......coviiiiiiiiiei e eeaaan -3
4.2.3. TIME DEINES . .cuiiieeee e e e e e e eees 4-4
4.2.4. Switch Action REIUrN ValUES........couiiiiiiiiie ettt 4-5
4.2.5. External Action Function DedarationsS..........c.ccoeeeveeiiieieieemeiieeeeeeiiieeeeeeandf -6
4.3. Protocol/State Machine Table File CoNtentsS...........ooeevviiiieiiiiiiieeeeeeeeeeeeee e 4-6
e I O 1 0T 10 (o = =T PP 4-7
4.3.2. Action Parameter DEfINItIONSocouiiiiiiiiic e 4-7
4.3.3. Switch Return Value Table and the Switch Table..........ccooeiiiiiiiiiiieennn. 4-7
4.3.4. Action Routines that PassParameterS.......cc.ovvviiiiiiiiiiiieiieieeeeeeeveeee e -8
4.3.5. State/Event To Action Array Jump Table..........oooiiiiiiiiiieeeeeee -9
4.3.6. ACtON VEAOr Tabl....ccvn i -10
4.3.7. State Machine Definition SLrUCIUrE.cooviiiiiiiee e -10
4.3.8. Interrdations Betwean Generated StrUCIUrES.covvivvniiiniiiieieeee e 4-11
5. State Machine/Protocol Exeautor
5.1. Calling the State Maching EXEQUEONccuuuuiiiiiiii e eeiee e 51
5.2. State Machine EXeautor REtUrN ValUEScovniiiniiiiii et 5-2
5.3. State Machine Test/Debug ProCEIUIES.oiiiiiuiieiieiieciiiiieiie e ee et e e e e e e ee b 5-2
5.4. Implementation of @ ProtoCol Layer............oviiiiiiiiiiiiiiiie e 5-4
5.5. Communications Systems IMplementationocoeeiiiiiiiiiice e 5-5
6. Action Prototype File
B.1. ACHON HEBOE Fil ... vttt e e et eemm e eeees 6-2
6.2. Action Function Prototype Header Fil ..o 6-2
6.3. Action FUNCLION BOAY FIl@.......n ettt 6-2
7. Protocol INformation File............oooeiiiioeeeeee et 7-1
8. StAtE/EVENT NAMES FIIC... ..ottt e 8-1

Appendix A Error Messages

Bayfront CAPEGen Compiler Error MESSAgES......cccvuuiieiiiiiii ettt A-1
Bayfront CAPEDraw Viewer Error MESSgES.uieiiiiiiieiieieeiieiieeeeeeeeeeeeee e A-3
Appendix B Bayfront TedhnologiesLicense Agreementccccoovveeiiiieecciineenns B-1

Index

Figure 1 : Bayfront CAPE TOOIS™ USBOE.c.uuuiiiiiiiiiieiieiiiieeiie ittt ee e et e et e e e e e e e e anateesreeeeaaaaaaaaaaaaans 1-1
Figure 2 : International Standards Orgranizaion ISOMOEcceueiiiiiiiiiiiiiiee e 1-2
Figure 3 : Inter-Layer COMMUNICAIIONS.ciieitieee it e e e eee e e e ee e e e ee e 1-2
Figure 4 : Communicating State MachineSwithin @aLayercooouiiiiiiiiiiiieeeiieeee e 1-3
Figure 5 : Microsoft's Windows NT Client/Server MOde!coouuuiiiiiiiiiiiiii e 1-3
Figure 6 : Microsoft's Windows DDE Client/Server MOGE!oooieiiiiiiiiiiiciiiiiieieeeeeee e 1-4
Figure 7 : DDE Server State/Event TranSitiOn Diagram...........ieeeeiiiiieieiiiieeeee et e e eeeee 1-4
Figure 8 : Heads Up Display RealtiMe SYSLOMcooiuiiieiieiii et 1-5
Figure 9 : Protocol Layer Architedural MOeiiiiiiii e 1-6
Figure 10: Layered Protocol CAPE Architedure Modeloiiiiiiiiiiiiiiiie 1-6
Figure 11 : Client/Server CAPE Architedure MOdE............oiiiiiiiiiiiiie e 1-7
Figure 12 : Realtime CAPE Architedure MOdEoooiiiiiiii e 1-7
Figure 13: Data transfer protocol State Transition Diagram.........ccuuuveiieiiinieeeiiimea e 1-8
Figure 14 : Example State/Event TransitiOn Diagram........ccouvuuaiiiiiiieeeeeeeea e 1-9
Figure 15: EXample SDL DI@Qraimccceuuuiiieiiie ettt s 1-10
Figure 16 : Bayfront CAPE Tods User Manual CONtENTS..........ccuuuuiiiiiiiieeieeee e 1-11
Figure 17 : Example Protocol Definition Language File...........ooooiiiiiiiiiiiiiiee e 2-2
Figure 18: Bayfront CAPE TOOIS Main MENUS.........coouuuniiiiiiii i 2-2
Figure 19 : CAPEGen Compiler applied to the Q.931Protocolooveiiiiiiiiiiiiiiiiiieeee e 2-7
Figure 20 : CAPEDIaW VIEWES USBJE. .. .cicuuui ettt e ettt ettt e e e e e e e e e e e e e e ae et eeeeeaaeaaaaaaaaaaaaaaaaaas 2-8
Figure 21 : Adobe Postscript Output Page FOrMELSooiieeuiieeeiiiiie et e e 2-9
Figure 22 : Graphic Printers and Formats Supported by the CAPEDraw Viewerccoeeeveeviiiieaenes 2-10
Figure 23 : Example PDL DefiNitiONooiiiiiiieieei ettt eeeeeeeeeaaens 31
FIGQUrE 24 1 TABNLITIEN ...t 32
Figure 25 : PDL RESEIVEO WOITS.ottt et s e e e e mm e 3-2
FIGUE 26 1 INUMDEIS. ...ttt ettt et e et e e e et b ettt ettt ettt e et e e eaaaaaeeeanssseeeeeeeeaaaaaaaaaaaans 3-2
Figure 27 : PDL SETUCIUIE SYNEAX ...cevvuneiieitie e ettt e e aeee ittt e et et e e e e mmesssbsbb e bessee e et e eeeaaeaennnrnne 33
Figure 28 : PDL INitial STale SYNEAXuieieeiiieeeeii e e ettt et ae e e e e e eeaeaaannes 33
FIQUre 29 1 PDL SEAIE SYNEBX ..eevuuieiiiitiie e eetti e e e e ettt e ee sttt b st s e s e e e e e eemmsnnnnnnrene 33
Figure 30 1 PDL EVENE SYNTAXcettiiiiiiiii ettt e e e e e emab bttt ettt e e e e e e e aaaaaeeesaneseeeeeees 34
Figure 31 : PDL EVENE TrIQOBr SYNEAX....ccieuuiieeiiiiie ettt et e e e e e e e e e e e e ee e e ee e e ea e e e e e aaaaaaaaaaaeaa s 3-4
Figure 32 : PDL EVENt MBI SYNEAX ...cccvviniiiiiiii ettt bttt ettt e et e e e e e e emabeebbeseeeeeeeeeaaaaaaaaaaaas 35
Figure 331 PDL ACHONS SYNEAXeiieiiieieieiii ettt a e e e e e e e s e e 3-6
Figure 34 1 PDL ACHON SYNEAX.....ceetuniieieiiiie ettt ettt e e e e e e e e e e eee et e et e e e e e e e e e e e e e e s e e s e s aaaaaaaaaaaeeas 3-6
Figure 35: PDL External Routine Argument SYNEAXccuuueiieeuiieaeiieeea e 3-7
Figure 36 : PDL SWItCh ACHION SYNEAXcieiiiiieiieii ettt 3-7
Figure 37 : PDL ACLHON MBI SYNEAX. .. .ccieuuiieeiiiiie et eetetie ettt ettt e et e e e e e e e e e e e ee e et e e eeaaeaaaaaaaaaaaaaaeaans 3-8
Figure 38 : PDL Syntax EXaAMPIE ittt e bbb e et e e eeaaeaennanene 39
Figure39: C Code Tahle Fil @ GENEIalioN.oiiiiiiiiieii ettt ee e e e e e e e e e e e e e e e e e -1
Figure 40 : Protocol Layer Architedural MOGEooooiiiiiiii e ee e -2
Figure 41 : State DefinitionSfrom gO3LN.....cooueiiii e -3
Figure 42 : Event DefinitionsS from qO3Lh......coouuiiiii e 4-4
Figure 43 : Timer Definitionsfrom gO3 LN i 6 -5
Figure 44 : Switch Function Return Values from q93Lh...... ..o 4-6
Figure 45: Portion of External Action Prototypesfrom qO3Lh.... ..o -6
Figure 46 : Action Parameter DEfiNitiONS...........ooiiiiiiiiiiiiiiiiie ettt a e e -7
Figure 47 : Switch Tablefrom gO3LC....ccuuun it ee e e e e e e e e e 4-8
Figure 48 : Switch Return Value Table from gO3LCoviiieiiiiieiii e 4-8
Figure 49 : Portion of Action Routines that PassParameters from q931C.......cccuvviiiiiiiiiiiiiiiiieneeeeen. 4-9
Figure 50 : State/Event Table from gO3LC.....ccveiieiiiiiieiii e -9

List of Figures

Figure51:
Figure52:
Figure53:
Figure54:
Figure55:
Figure56:
Figure57:
Figure58:
Figure59:
Figure 60:
Figure 61 :
Figure 62:
Figure 63:
Figure 64 :
Figure 65:

Portion of the Action Array Jump Table from gO3LC......ccuuuiiiiiiiiiiii e -10
Portion of the Action Vedor Tablein g93LC......uuu i eees 4-10
State Machine Definition Structure in QO93LCuiiiiiiii e 4-11
Relationships between Generated qO31SIIUCIUIES.ccuuuiiiiiiiiieiieiiiieiieeeeeeee e -11
State Maching EXEQUIOr USB........coiiiiiiiiiiiiiiii ettt er e e 5-1
CAPE Tods CommunicationS MOOEuuuiiiiieeiiiiiiieeeiiee e 5-1
Example 931 State Maching TeSt Program........cccuuuueeieeuiiieeeieee e 5-3
Event Procesar PSEUTO COUEcooieiiiiiiiiiiiii et ee e 5-4
C Filesto Implement an Example Four Layer Communications Systems.............ceeeveeeee. 55
Action Prototype Fil € GEeNeration.............ueiieiuiieeeiiieee e 6-1
ACHTII ENEXE CONTENES ... e e 6-2
ACENAI EXE CONEENES ...ttt rr e e e e e e e s ae e e e 6-2
Q.931 State/EVENt NamMES Floun i e e e e e e e e eeeees 7-2
State/Event NameS Fil € GENEIalioN..........uvveuuiiiiee e ieeeisii e e e -1
State/Event NameS Filefor gO3L. ... e 8-2

vi

Chapter 1 Introduction

1. Introduction

Thank you for purchasing Bayfront Tedchnologies Computer Aided Protocol Engineeiing (CAPE)
Tods. This chapter introduces the mncept of Computer Aided Protocol Engineging (CAPE) and
the structure of the Bayfront CAPE Tods™. If you prefer to immediately install and run the
Bayfront tods, please refer to Chapter 2.

1.1. Computer Aided Protocol Engineerning (CAPE)

Realtime systems are different from traditional software systems. A traditional software system
takes input and goes from an initial state to a final state. Typical examples of traditional
software systems are batch, off-line data processng and numerical packages. Realtime systems
such as communications g/stems, operating systems and processcontrol systems never terminate
in afinal state. These systems maintain a continuous interaction with their environment. They
are epeded to remain in operation for long periods of time. Protocol systems are a subset of
realtime systems. The Bayfront CAPE Tods were aeated to address the @nstruction of
communication protocol systems. These same tods can be used to aid the @nstruction of other
realtime systems such as processcontrol systems or client/server systems. Bayfront CAPE Tods:

e are used to automate a significant percent of protocol system implementation,
maintenance and documentation

* accept user defined protocols or state machines and generate C code implementations

« automaticaly generate state transition diagrams, state/event transition diagrams and
International Telegraph and Telephone Consultative Committee (CCITT) Spedfication
and Description Language (SDL) diagrams from the input protocol or state machine
description.

The figure below ill ustrates the use of Bayfront CAPE Tods.

Protocol Diagrams:.
‘,S,pe,m,ﬂc?n,m? . —» State Transition File — —» State Transition
l Bayfront
”””” — State/Event Transition File —| CAPEDraw [— State/Event
Protocol Viewer
Definition L » SDL File — — SDL
File ‘
- 7(PD|7-)7 ‘ — Protocol Information File —» Documentation
1 State/Event Simulation
Bayfront C Cod
— ode P
CAPEGen State Machine) ot '
X State +7C L + Actions '+ Primitves—» Protocol
Compiler Tables XEcutor e - oo Implementation

— State/Event Names File

—> Action Prototype File

7 - User Supplied Information or Routines

Figure 1. Bayfront CAPE Tods™ Usage

Bayfront's CAPE Tods take a user generated protocol definition language (PDL) file as inpuit.
The PDL describes the protocol in terms of protocol-level concepts like states, events and actions.
Bayfront's Cape Tods then create several output fil es depending on the options sleded. These
filesinclude

* C Codefileto implement the protocol

Bayfront Technologies CAPE Tods™ Users Manual

» Action prototypefileto asist in the implementation of actions
* Protocol Information file for crossreference

» State and Event namesfil e for debuggng purposes
« State Transition Diagram file (pre layout and dsplay format)

» State/Event Transition Diagram fil e (pre layout and dsplay format)

e System Description Language (SDL) Diagram file (pre layout and display format).

Implementation is only part of the dfort in constructing a succesul system. The Bayfront
CAPE Tods also aid the developer in the important documentation, simulation and
validation aspeds of system construction. The generation, content, and use of this information

isdiscussd in detail i n the remainder of this manual.

1.2. Communication System Architedures

Communication systems are composed of protocols and state machines contained within
communicating functional layers. A hierarchical set of layers is called a protocol stack. The
International Standards Organizaion (1SO) Open Systems Interconnedion (OSl) model defines
seven such functional layersill ustrated in the figure below.

Application Layer

Application Layer

Presentation Layer

Presentation Layer

Session Layer

Session Layer

Transport Layer

Transport Layer

Network Layer

Network Layer

Data Link Layer

Data Link Layer

Physical Layer

el

Physical Layer

Figure 2 International Standards Organization SO Model

Each layer consists of communicating protocols or state machines.
ocaurs through communications channels, queues or mailboxes depending on the operating

system and implementation details.

communication mode!.

Layer i+1

1 4

T

Communication Channels/
gueues/mailboxes

Layer

I

Communication Channels/
gueues/mailboxes

Layer i-1

Figure 3. Inter-Layer Communications

Interlayer communication

The figure below illustrates a general interlayer

Chapter 1 Introduction

Each functional layer contains one or more mmmunicating state machines. These state
machines are driven by alayer event processor and typically react to an incoming event such asa
receved message or atimeout. The figure below ill ustrates a general layer composed of four

state machines and an event procesor.
State
Machine 2
State
Machine 3

Figure 4. Communicating State Machineswithin a L ayer

The layer event proces®r determines the set of state machines neaded to respond to an event. It
then applies the event to those state machines.

1.3. Client/Server System Architedures

Client/Server systems are omposed of two different types of proceses: clients who request
services and servers who are service providers. This g/stem has the advantage of modularizing
function and well defined interfaces. Newer operating systems guch as Microsoft's Windows NT
aswell as certain features of Microsoft's Windows OS are based on this model. The figure below

ill ustrates the Windows NT Client/Server Structure.

4 Operating System Events

State
Machine 1

State
Machine 4

Operating System Events

y

Event
Processor

Client Network File
Application Server Server

= t *

\ \ Win32 Win32

| | | | Server Client

o |] f

I

| | | | | User Mode

| - | | | Window's NT
77777777 - Kernel Mode

Figure 5. Microsoft'sWindows NT Client/Server Model

Present in the Windows NT environment are servers that provide a spedfic functionality with a
well defined interface protocol. For example the network server acts on connedion, data transfer
and dsconnedion requests from client applications. The network server must deted clients who
violate the server protocol (e.g. a client who transfers data or disconneds before mnneding).

The figure below illustrates Microsoft's Windows Dynamic Data Exchange (DDE) protocol
messages.

Bayfront Technologies CAPE Tods™ Users Manual

WM_DDE_INITIATE
WM_DDE_ADVISE
WM_DDE_REQUEST
WM_DDE_ACK
WM_DDE_UNADVISE

Server
4| WM_DDE_ACK

WM_DDE_TERMINATE
Windows — —

Client

Windows

WM_DDE_DATA
WM_DDE_TERMINATE

Figure 6. Microsoft's Windows DDE Client/Server Model

The Windows Client and the Windows Server exchange numerous messages. Not al messages
arevalid at any onetime. Both the Client and Server implement a protocol or state machine that
defines the rules for message transfer. The protocol allows the Server to deted faulty Client
communications and assgsts the Client in the orderly connedion and data transfer with the
Server. The Bayfront generated state/event transition diagram for the DDE Client/Server

protocol isill ustrated in the diagram below.

rclient. WM_DDE_ACK

PEND_TERMINATE,

rclient WM_DDE_
TERMINATE

rclient WM_DDE_
INITIATE

INITIATED

rclient WM_DDE_ .
REQUEST rclient WM_DDE_ADVISE

WAIT_ACK1

rclient WM_DDE_

rclient WM_DDE_
UNADVISE

REQUEST rclient_WM_DDE_DATA

WAIT_ACK2 WAIT_ACK_REPLY

rclient. WM_DDE_ACK rclient WM_DDE_ACK

Figure 7. DDE Server State/Event Transition Diagram

Chapter 1 Introduction

Microsoft has itself realized the cmplexity of the dient/server DDE protocol and implemented
an application interface layer on top to try to smplify and make mnsistent the interface
Microsoft call s this the Dynamic Data Exchange Management Library (DDEML).

Bayfront's CAPE Tods assst in the design of client/server systems by abstracting and
formali zing the dient/server protocols into spedfic states, events and actions.

1.4. Realtime System Architedures

Realtime system architedures are mmposed of separate processes which are mutually dependent.
The action of one processmay start or stop the activity of other proceses. These interdependent
activities between processes must be synchronized. Proceses g/nchronize by exchanging
information through channels, mailbaxes or queues. This information exchange is usually
performed according to a protocol or state machine.

The figure below ill ustrates a high level architedure of an Aircraft Heads Up Display (HUD)

realtime system.
Navigation
Process

Armament
Process

Heads Up
Display
Process

Target Radar
Process

Figure 8. Heads Up Display Realtime System

The architedure of the Heads Up Display system consists of the interaction of mutually
dependent processs (e.g. armament, navigation, target radar and heads up dsplay processs).
These processes communicate through protocols which define spedfic states, events and actions.
Bayfront's CAPE Tods provide the realtime developer with a formalism to design the inter- and
intra- processcommunications.

1.5. Bayfront CAPE Architedural Model

Bayfront CAPE Tods support an architedural mode that views an individual communications
layer, redltime process or client/server protocol as composed of an event processor, a state
machine exeautor, spedfic protocol state tables and their supporting actions and primitives.

Bayfront Technologies CAPE Tods™ Users Manual

Events to
Operating System

Events from IJ:

Operating System State Tables
i l Action Primitive
Action Primitive

Event ' State Machine ' }
Processor Executor Action Primitive

Action Primitive

Action || Primitive

I e

Figure 9. Protocol Layer Architedural Model

Because protocol systems are intimately involved with hardware and operating environments the
event processor, actions, and primitives are all programmed by the user of Bayfront CAPE
Tools. Bayfront supgies the state machine exeaitor (Sm exec. c¢) in source form and example
event procesors. The Bayfront CAPEGen Compil er produces the state tables and action function
prototypes from a Protocol Definition Language (PDL) file. Sincea layer can consist of multiple
interacting state machines there are state tables and action prototypes for each state machine.
Each state machine is described in a separate PDL file. The benefit of the Bayfront CAPE
Todsisin the analysis, documentation and maintenance of the protocol in protocol-oriented
PDL terms. The error prone alternative is to maintain the state table structures by hand,
hand simulate the states, and hand draw the documentation.

Communications layers are @mbined using the operating environment communication
medhanisms of streams, queues, communication channels, or mailbaxes. This is sown in the
figure below.

Events from

. Events to
Operating System

Operating System

Communications Layer i+1 +
Communications Layer i T
Event ' State Machine ' }
Processor Executor Action
State Tables Action =

Figure 10. Layered Protocol CAPE Architedure Model

Client/Server systems are aomposed of a flat architedure of communicating event procesors.
Thisis $own in the figure below.

Chapter 1 Introduction

.Communication via:

Client
Event
Processor
) y
| State
Actions Machine
- Executor

: Primitives |

,,,,,,,,

- named pipes
. - TCP/IP
. - NetBios

Server.
Event
Processor

State —
Machine +—¥ Actions
Executor N

y
Primitives

Figure 11. Client/Server CAPE Architedure Model

Realtime systems are also composed of a flat architedure of communicating event processors
with a hardware abstraction key to the architedure. Thisis $own in the figure below.

Realtime Realtime
Process 1 Process n
State Event ‘ Event State
Machine I ™| Machine
ac Processor “| Processor
Executor y ‘ ‘ y Executor

Primitives

Hardware
Feedback
Control

Hardware

Interrupts

Reions]|

SoﬁwaE/ﬁrmware

Hardware

Hardware
Feedback
Control

Figure 12. Realtime CAPE Architedure Model

The user suppied event procesor interfaces to the operating system spedfic routines to receve
events. These events are ather completely handled by the event processor or they are trandated
into events that are handled by some of the state machines in the layer. These events are defined
in the spedfic protocal state tables produced by the CAPEGen Compiler. The esent processor
invokes the state machine exeautor with the arrent state and event. The state machine exeautor
triggers the exeaution of actions for the event in the state. The actions depend on supporting user
supdied primitive routines that interfaceto the operating system and the hardware. When all the
actions are triggered for the spedfic state/event pair the state machine exeautor optionally
changes the arrent state and returns contral to the event procesr.

The event processor creates a structure @lled the Event Control Block (ECB) upon the recept of
each event that contains the mntext and other useful information. The ECB contains all
information necessary to act on the arrrent event. This information includes a pointer to the
event, a pointer to the spedfic context of the event, the state machine name and other
miscdlaneous fields used for implementation optimization. A more mncrete example of the
event procesr and state machine interaction is given in Chapter 5.

1.6. Communicating Your Results

The Bayfront CAPEDraw Viewer produces high and low level diagrams of your protocols that
they may be mommunicated to ahers. These graphic representations of your work are useful bath

Bayfront Technologies CAPE Tods™ Users Manual

to the development team and as end-user documentation. The diagrams can be automatically
produced from the same PDL definition used to generate the implementation so there is never a
reason for a diagram to be out of date with the implementation. Threekinds of diagrams are
avail able; state transition diagrams, state/event transition diagrams, and CCITT Spedfication
and Description Language (SDL) diagrams.

1.6.1. State Transition Diagram

The state transition diagram shows the possble transiti ons between the states of the protocol. It is
the highest level diagram of the protocal state machine. The state transition diagram displays the
initial state at the top of the page with all the state interconnedions bel ow.

SetupReceive SetupSend

Sending

WaitAck

Figure 13. Data transfer protocol State Transition Diagram

The figure above shows the state transition diagram for the data transfer protocol (this protocol
can be found in the examples diredory). Some of the transitions have arrowheads on only one
end indicating one way transitions. Transitions with arrowheads on bath ends imply the protocol
can bounce back and forth between the two states. Some states like Recei vi ng and Wi t Ack

have transitions to themsalves. This indicates that some events are handled in that state without
making a transition to another state.

1.6.2. State/Event Transition Diagram

The state/event transition diagram augments the same transitions $own in the state transition
diagram with the events that cause the transitions. This $ows how external events may move
the protocol state machine through its dates. The state/event transition diagram displays the
initial state at the top of the page with all states and events below.

Chapter 1 Introduction

Eventl

Event2 Eventl
Figure 14. Example State/Event Transition Diagram

The state transition diagram abowetells usthat Event 1 from St at el causes a transition to
StateZ2.

Note: The state displayed at the top of the diagram isthe first state listed in the PDL (after
the InitialState statement). This allows the user to customize the look of the diagram
depending on the state/event connedivity. For example if the initial state is highly
conneded compared to aher states the diagram will be lesscomplex if the first state is not
displayed at the top.

1.6.3. SDL Diagram

The SDL diagrams are the lowest level diagrams of the protocol state machine. There is one
SDL diagram for each state in the protocol. The SDL diagram shows the events and actions that
lead to the transition from one state to another or the same state. The SDL diagram shows the
state name enclosed in a circle at the top of the page. The next row are esents followed by
actions and then new state transitions at the battom.

Bayfront Technologies CAPE Tods™ Users Manual

WaitAck
rUsr_Disc rNet_Disc >Net_NotAc >ack_time0Lt rNet_Ack
Y
sNet_Disc sUsr_Disc Retry StopTimer(Tack)
StopAllTimers| |StopAllTimers YesRetry NoRetry SE_aI_:rStél'ri]rQ;er
Y

/
ResendMessage (sUsr_Abort Sending)

Res(?ééﬂ)mer sNet_Abort

Y

< WaitAck> StopAllTimers

Figure 15. Example SDL Diagram

In the SDL diagram for the data transfer protocol state WAi t Ack shown above we @n seethat
the event r Net _Not Ack ishandled in one of two ways. With aretry there is no state transition.

Without retry thereisatranstion tothe | dl e state.

1.7. Organization of the manual

A summary of the dhaptersis described below.
Chapter 1 Introduces the features, architedure, and environment of the Bayfront CAPE
Tods.

1-10

Chapter 1 Introduction

Chapter 2 Provides a quick start for users wishing to install and use the tods with
minimum background reading. This includes install ation, the aeation of a
Protocol Definition Language (PDL) file, CAPEGen Compiler invocation,
CAPEDraw Viewer invocation, and the resulti ng outptt fil es.

Chapter 3 Describes the syntax and semantics of the Protocol Definition Language
(PDL).

Chapter 4 Describes the C Code output fil es produced by the CAPEGen Compiler that
are used to implement a protocol.

Chapter 5 Discusses the function, structure and use of the state machine exeautor.

Chapter 6 Provides a description of the action function prototype fil es produced by the
CAPEGen Compiler.

Chapter 7 Discusses the structure of the protocol/state machine information file
produced by the CAPEGen Compler for cross reference and documentation
purposes.

Chapter 8 Discusses the use of the states/events names fil e produced by the CAPEGen

Compil er for state/event simulation and debuggng puposes.

Appendix A Documents the eror messages generated by the CAPEGen Compil er and the
CAPEDraw Viewer.

Appendix B Reproduces the Bayfront License Agreament from the diskette package.
The figure below ill ustrates the chapter contentsin relation to the CAPE Tod outpt fil es.

Protocol ‘
. Specification | Diagrams: Chapter 1 & 2
" Chapter1
- l = — State Transition
ST T T — State/Event
Protocol
Definition L SDL
File ‘
‘LM K — Protocol Information File Chapter 7
l Chapter 4 Chapter 5
Bayfront
C Code IS,

CAPE — State +Ste£§e'zllig?me + Actions |+, Primitives —» Protocol
Tools(tm) Tables L ST Implementation
Chapter 2 Chapter 8

— State/Event Names File
Chapter 6

— Action Prototype File

7 - User Supplied Information or Routines

Figure 16. Bayfront CAPE Tods User Manual Contents

1-11

Bayfront Technologies CAPE Tods™ Users Manual

1-12

Chapter 2 Quick Start

2. Quick Start

This chapter instructs you how to install and run the Bayfront CAPE Tods™.

2.1. Installation

Bayfront Technologies will ship either a 5 1/4" or 3 1/2" disk with the DOS, Windows or
386486 Unix versions of the CAPE Tods and a 3 7/2" disk with the SUN Unix version of the
CAPE Tods. If you have the wrong dsk type please inform either your local distributor or
Bayfront Tedhnologies for immediate replacement.

2.1.1. Windows Install ation

To ingtall the Windows product, insert the disk into the appropriate drive and either from the File
Manager seled (double dick) the file INSTALL.EXE or from the Program manager choose the
Fi | e] Run menus and enter biinstall (if the CAPE Tod disk isin the b drive). You will be
prompted to sedled a diredory to install the CAPE Tods or use the default diredory
c:\bayfront.

The README fil e should be read for any last minute information.

2.1.2. DOSIngtallation

To ingtall the DOS product, insert the disk into the appropriate drive, create a diredory
bayf ront, and copy the files to the newly created bayfront dredory (e.g., xcopy a:
c:\bayfront\ /e/s to copy the files from the a: drive to the c: drive). The fina
diredory treewill | ook as foll ows:

BAY FRONT.DIR
README
CAPEGEN.EXE
CAPEDRAW.EXE
CAPE.H
SM_EXEC.C
ACTHDR.TXT
ACTBODY.TXT
ACTFILEH.TXT
EXAMPLESDIR

The README fil e should be read for any last minute information.

2.1.3. Unix Installation

To install the software on a Unix system, insert the disk in the appropriate drive, create a
diredory bayf r ont , and copy thefiles to the bayfront diredory (eg.,tar xvf device
/ bayfront/*, where devi ce is the local device name for your floppy drive). After
install ation the diredory treewill |1 ook as foll ows:

bayfront
readme

cape.h
sSm_execc

Capegen
acthdr.txt
actbody.txt

2-1

Bayfront Technologies CAPE Tods™ Users Manual

2.2.

2.3.

2.3.1.

actfileh.txt
examples

The readme file should be read for any last minute information. The Bayfront CAPEDraw
Viewer is not available for Unix platforms. Unix CAPE Tod users wishing to generate state,
state/event and SDL diagrams should use the CAPE Tods for DOS (included in the Unix CAPE
Tod package) to layout and dsplay the diagrams on a PC based patform. The DOS CAPE
Tods can generate Postscript fil es of the diagrams which can be transported and viewed on Unix
platforms with postscript viewers.

Creating the Protocol Definition Language I nput File

The first step in using Bayfront CAPE Tods is to create a Protocol Definition Language (PDL)
input file. PDL files describe a protocol/state machine in terms of states, events and actions. The
protocols can be proprietary or created from standards based reammendations sich as from the
CCITT, ANSI, IEEE, and OSI organizaions. An example PDL definition is shown below. The
PDL language is described in detail in Chapter 3.

ex1{ Initia State = Statel,;

state Statel::
Eventl -> Actionl, Action2 >> State2;
Event2 -> Action3;
state State2::
Eventl -> Action4;
Event2 -> Action5, Action6 >> Statel;
}

Figure 17. Example Protocol Definition Language File

The PDL file an be aeated using any text editor, the Windows CAPE Tods include an
integrated editor. In the example abowve the PDL describes a protocol/state machine alled ex1
with two states, two events and six actions. The initial state is St atel. The symbd >>
indicates a transition to a new state. An example transition would be the occurrence of Event 1
while in St at el, Actionl and Acti on2 would be eeauted and the new state would be
St at e2. Seethe Bayfront CAPE Todsexanpl es diredory for more PDL file examples.

Using the Bayfront CAPE Todlsfor Windows

The Windows version of the CAPE Tods provides an easy to use interface The top menus are
shown below.

File Edit Compile View Options Window Hdp
Figure 18 Bayfront CAPE TodsMain Menus

All menu options will be desdleded or 'grayed out' until they are active. For example if there is
no PDL file sdeded then the Edi t submenus will not apply and all options will be desdeaed.
In additi on to the menu structure above the CAPE Tods support a status line on the battom line.
The status line provides the user with menu spedfic information depending on the airrent
location of the mouse.

File Submenus

The Fi | e submenus deal with PDL file opening and closing as well as bath file and dagram
saving and printing. TheFi | e submenu functions include:

File | New Creates and opens anew PDL file for editing.
File | Open Opens an existing PDL file for editing.
File | Save Saves the aurrent active PDL window in afile.

2-2

Chapter 2 Quick Start

File| Save as Saves the aurrent active PDL window in a user seledable
file.
File| Export Exports a diagram file as an Adobe Postscript® (eps) file.

The user will have the option and be prompted to rotate the
diagram 90 degrees before file aeation.

File | Print Prints the aurrent active window (PDL, text or diagram).
If text is €leded in an edit window then only the seleded
text may be printed. Text will be printed in the font
seleded in the Opt i ons| Edi t menu. Diagrams will be
printed using the font seleded in the Opti ons| Vi ew
menu.

File| Printer setup Configuresthe printer. Note: the printer settings have local
significanceonly (i.e. within the CAPE Tods only).

File | Exit Exits the CAPE Tods. If there are any unsaved modified
PDL files open you will be prompted to save them upon
exiting.

2.3.2. Edit Submenus

2.3.3.

The Edit submenus deal with the aliting of the PDL file. The elit capabilities work in a
similar manner to the Windows predefined edit features. The Edi t submenus functions include:

Edit | Cut Removes the seled text into the dipboard.

Edit | Copy Copies the seleded text into the dipboard (nondestructive
cut). For aview (diagram) window this copies the diagram
to the dipboard as a windows metéfile for pasting into
other applications (e.g. MS Word).

Edit | Paste Copies the previoudy seleded text from the dipboard to
the aurrent cursor positi on.

Edit | Delete Clearsthe sdleded text.

Edit | Find Finds the next ocaurrence of the user spedfied text. Find

will pick upthe search string from the seleded text (can be
manually overridden) if lessthan aline long.

Edit | Replace Replaces the next ocacurrence of the user spedfied text with
user spedfied text. Replace will pick up the search string
from the seleded text (can be manually overridden) if less
than alinelong.

Edit | Search Repeats the previous Find or Replace operation from the
Agan F3 current cursor.

While in an edit window the right mouse button brings up a popup menu for Hel p| Topi ¢
Sear ch and the Cut / Copy/ Past e/ Del et e editing functions.

Compile menu

The Conpi | e menu reads the arrrently loaded and active PDL file and parsesit. The output
files pedfied in the Opt i ons| Conpi | e dialog box will be generated upon succes<ul parsing
of the PDL file. Syntax errors deteded duing the parse will cause the cmpiler to halt and pu
the aursor at the point of error in the PDL window. The status line will i ndicate an error was
found. Semantic arors such as gate unreachable will cause the parser to halt at the end of the
PDL file and open adialog bax with an error message.

When compiling the PDL file the aurrent parse status which includes lines parsed and states
currently parsed will be displayed in the statusline at the battom of the screen.

2-3

Bayfront Technologies CAPE Tods™ Users Manual

2.3.4. View Submenus

The Vi ew submenus display the previously generated diagrams for the PDL in the active
window. The seledions for the diagram typeswill be desdeded (i.e., grayed) if there are not any
previously generated dagrams by the compiler (see Opt i ons | Conpi | e dialog box options).
The Vi ew menu also allows the user to zoom in or out to gptimize the viewing of sdeded
diagrams. The Vi ew submenusinclude:

C Header file (.h) View the C Code header filein atext edit window

C Codefile(.c) View the C Codetablefilein atext edit window

Action prototypefile (.act) View the action prototype file in a text edit window

Information fil e (.txt) View the protocol information file in a text edit window

Namesfile (.str) View the state/event names file in a text edit window

State transition diagram View the state transition diagram in a diagram window. This
window can be seleded and printed by using the Fi | e| Pri nt
seledion.

State event diagram View the state/event transition diagram in a diagram window.

This window can be sdeded and printed by using the
Fil e| Print sdedion.

SDL diagram Opens a dialog box with a list of the SDL diagrams. The user
can seled which diagram to view in a diagram window. This
window can be seleded and printed by using the Fi | e| Pri nt

seledion.
Zoom x25% Zooms out of the arrently active diagram window by 25%.
Zoom x50% Zooms out of the arrently active diagram window by 50%.
Zoom x75% Zooms out of the arrently active diagram window by 75%.
No Zoom Views the arrently active diagram window with no zoom.
Zoom x125% Zooms into the arrently active diagram window by 125%.
Zoom x150% Zooms into the arrently active diagram window by 150%.
Zoom x17%% Zooms into the aurrently active diagram window by 175%.

All diagrams are automatically laid out before viewing for the first time. The status line will
show the layout progress On slower CPU's (e.g., 386s) layout might take a few minutes for a
complex diagram.

If the diagram file was generated after the PDL file was modified the CAPE Tods will open a
dialog box cautioning that the diagram might be out of date. The user can then either ignore the
warning and dsplay the diagram or generate an updeted dagram file. SDL diagrams can be
displayed all at once(i.e., all states) or the user can spedfy which diagram to display.

All diagrams can be minimized for later viewing. The minimized icons display the diagram
name and have different shapes for each type of diagram: state transition, state/event transition or
SDL.

Diagram display can be zoomed in and out in increments. This allows maximum flexibility
when viewing dagrams. All diagrams when seleded will display the zoom factor in the status
line at the battom of the screen.

Diagrams can be mpied to the Windows clipboard (seeEdi t | Copy abowe) and can be exported
to an Encapsulated Postscript file (seeFi | e| Export abowe).

Warning: depending on both the size and complexity of the diagram and the speeal of your
CPU, diagram display might take a few minutesto complete.

2-4

Chapter 2 Quick Start

2.3.5.

Options Submenus

The Opt i ons submenus all ow the user to seled options for the Edi t, Conpi |l e and Vi ew
menus and all ows the user to save, restore and backup the options configuration file (BCT.CTO).
The options sibmenusinclude:

Edit Sets tab spacing and font seledion for edit window and edit
printing.

Compile Seleds the output fil es generated from the parse of the input
PDL.

View Seledsthe diagram font characteristics.

Open Opens a CAPE Tods configuration fil e.

Save BCT.CTO Savesthe aurrent configuration settings in the default
BCT.CTO configuration file.

Save as Saves the aurrent configuration settingsin a user seledable
file.

The Compil e options spedfy the generation of the foll owing fil es:

* C CodeFiles

e Action Prototype File

* Protocol Information File

» State/Event Names File

e State Transition Diagram file

» State/Event Transition Diagram file
e SDL Diagram File.

The View options dialog bax allows the user to customize the diagram display. The View
options include:

arc grouping Similar referencelines in a diagram are grouped together to form
oneline. This smplifiesthe appearance of complex diagrams.

letters per line Adjusts the number of letters in aline in a box. This alows the
use of longer state, event or action names.

lines per label Adjusts the number of lines of text in a box. This allows the use
of longer state, event or action names (names are truncated if the
total lettersin abox are lessthan the name).

change font Allows the user to spedfy the font type, font style, font size and
provides a sample of the seledions. This option affeds the overall
display size of the diagram.

Note: all View options will apply to diagrams viewed after the option modification. All
currently active diagrams will retain the option settings when they were initialy displayed.

2.3.6. Windows Submenus

2.3.7.

The W ndows submenus support the Windows Multiple Document Interface (MDI) features.
The submenus all ow the user to tile or cascade the airrent windows, arrange the icons or close all
Windows. The minimize emmand minimizes all windows which is useful for examining the
many SDL diagrams from alarge protocol.

Help Submenus

The Hel p submenus support the Windows Help features. The Bayfront CAPE Tods™ User
Manual is contained in a condensed format in the Help window. To activate help use the
Hel p| I ndex option. For atutorial on using help seled theHel p| How t o Use Hel p menu
option.

2-5

Bayfront Technologies CAPE Tods™ Users Manual

The Help window also implements context sensitive help whilein a PDL editing window. To use
this feature place the insertion cursor on a reserved word (e.g. state, event, action, etc.) in the
PDL and call help by pressng the shift and F1 keys, sdled the Hel p| Topi ¢ Sear ch, or press
the right mouse button in an edit Window and sdled Topi ¢ Sear ch. Context sensitive help
givesthe user a quick way to referencethe PDL syntax.

2.4. Using the Bayfront CAPEGen Compiler (DOS/Unix)

Bayfront supports a command line version of the CAPEGen Compil er when operating under the
DOS or Unix operating systems. The CAPEGen Compiler isinvoked by typing capegen with
the desired options. The Protocol Definition Language (PDL) input file is chedked for corred
syntax. If the PDL file parseis successul, output files are aeated describing the protocol or state
machine. These outptt fil es are linked with the supfi ed state machine exeaitor (sm_exec) file
An overview of the files supdied by the users and the files supdied/generated by Bayfront is
given in Chapter 1. Other CAPEGen Compil er options generate input to the CAPEDraw Viewer
(DOS only). The CAPEGen Compiler command line and the associated options are described
bel ow.

capegen <options> infile.pdl <options>

wherei nfil e. pdl isauser supdied input PDL file, suffix must be . pdl and <opti ons>
refersto gptional command line switches, zero o more @n be present. The name of output files
istaken from the name of the state machinein the . pdl file. The acceptable option switches are
shown below:

-C Generates bath a header file (.h) and a state table code file (. ¢) that describes
the protocol state machine in the C language. The ntent of these files is
discussed in Chapter 4.

- sdl Generates a Spedfication and Description Language (SDL) file (. sdl) that is
input to the CAPEDraw Viewer for layout and display. An SDL diagram shows
the state to events to actions to new state transitions for a single state. The
. sdl file contains all such diagrams for a protocol state machine. Example
SDL diagrams arein the Bayfront CAPE Todsexanpl es diredory .

-S Generates a state trangition file (. s) that is input to the CAPEDraw Viewer for
layout and dsplay. A state transtion diagram displays a protocol state
machin€'s dates and the transitions between them. Example state transition
diagrams are in the Bayfront CAPE Tods™ exanpl es diredory .

-se Generates a state/event transition file (. se) that is input to the CAPEDraw
Viewer for layout and dsplay. A state/event transition diagram displays the
state to event to new state transitions for a protocol state machine. Example
state/event diagrams are given in the Bayfront CAPE Tods™ exanpl es
diredory .

-a Generates an action prototype file (. act) containing the templates of action
routines that must be hand coded by the user. Chapter 6 dscuses the @mntents
and use of thisfile.

- Generates a text file (. t xt) containing information about the protocol state
machine that is used for documentation. Chapter 7 dscusesthisfile.

-n Generates afile (. st r) containing C language state and event names used for
simulation and debuggng purposes. Chapter 8 gves the format of this file and
Chapter 5 discusesiits uses.

For example purposes the remainder of this manual will use the Q.931 potocol. Q.931lis a
protocol from the CCITT that describes how data and voice @lls are setup in an Integrated

2-6

Chapter 2 Quick Start

Services Digital Network (ISDN). Q.931is a complex protocol with many states, events, and
actions. This makes it an excdlent example to show the power of Bayfront CAPE Tods. The
figure below ill ustrates the generation of all possble output files from thisinput q931. pdl file.

-S . .
—> capedraw q931.s = ——— State Transition Diagram

—SC» capedraw q931.se ——> gate/Event Transition Diagram

—=sdlp. capedraw q931.sdl ———— SDL Diagram

iy g931.txt Protocol Information File
Protocol

[C 5 g931.h + sm_exec.c + Actions + Primitives .
- Implementation

capegen q931.pdl __|] q931l.c

=34 (931.act T
L-0_p 931.str State/Event Names File
Figure 19. CAPEGen Compiler applied to the Q.931 Protocol

2.5. Using the Bayfront CAPEDraw Viewer (DOYS)

Bayfront supports a command line version of the CAPEDraw Viewer when operating under the
DOS operating system. The Bayfront CAPEDraw Viewer uses output files from the Bayfront
CAPEGen Compiler to draw state transition, state/event and Spedfication and Description
Language (SDL) diagrams. These graphics may be displayed on the screen, displayed on a
printer, or sent to an Adobe PostScript® file for inclusion in protocol documentation by word
processng programs.

Currently the CAPEDraw Viewer is avail able only under DOS and Microsoft Windows operating
systems. Unix CAPE Tods packages include a DOS version. Unix users wishing to draw and
view diagrams should transfer the PDL filesto a PC and convert them to PostScript files. These
can then be viewed using any PostScript Viewer under the Unix operating system.

A state transition, state/event transition or SDL diagram is drawn by atwo o threestep process
1. Invokethe CAPEGen Compiler with the appropriate options (- s, - se and/or - sdl).

2. Layout the diagram(s) in the fil e by invoking the CAPEDraw Viewer with the - | option
and theinput filename. Theresulting file (either . s ->. sd, . se ->. sed, or .sd| -
> . sdd) contains page layout information for the diagrams. If the protocol is very
complex this layout phase @n take some time.

3. Draw the diagram(s) in the layout fil es by invoking the CAPEDraw Viewer with the - d
option and the input file name. The diagrams are then drawn by invoking dr aw with
the appropriate input file name and options. The diagrams may be displayed on the
screen, sent diredly to a printer, or sent to a PostScript graphics file. 1f an SDL layout
file cntains more than one diagram, then all of the diagrams are drawn unlessthe - n
switch seleding a subset of diagramsis gedfied.

Note that steps two and threemay be mombined in one ommand line (e.g., capedraw -1 -d
g931. sdl). For filesthat take along time to layout and will be displayed in more than one way
(e.g., printer and screen) it isfaster to lay out the diagrams in one step and draw them in another.

The figure below ill ustrates this process

2-7

Bayfront Technologies CAPE Tods™ Users Manual

Step 1. Generate Pre-layout files with the Bayfront CAPEGen Compiler

-s . .
— g931.s State Transition Pre-layout File

-se
capegen q931.pdl ———> 931.se State/Event Transition Pre-layout File

ﬂb g931.sdl SDL Pre-layout File

Step 2. Layout Files

capedraw -1 g931.s g931.sd State Transition Draw File
capedraw -1 q931.se g931.sed State/Event Transition Draw File
capedraw -l q931.sdl g931.sdd SDL Draw File

Step 3. Printout and/or display diagrams

capedraw -d -p:PostScript g931.sd display state transition diagram

on PostScript printer LPT1

capedraw -d q931.sdd display all SDL diagrams on screen

When the CAPEDraw Viewer displays diagrams on the screen it waits for the user to strike a key
between diagrams. Pressthe ESC key to escape out of the CAPEDraw Viewer. During the output
of PostScript files the CAPEDraw Viewer draws the airrent diagram on the screen but does not

Figure 20. CAPEDraw Viewer Usage

wait for the user to strike a key between diagrams.

The CAPEDraw Viewer command lineis given below.

Theinfile.ext isa diagram file from the CAPEGen Compiler or a layout file from the

capedraw <options> infile.ext <options>

CAPEDraw Viewer. The CAPEDraw Viewer options are discussed bel ow.

- n: pattern

- p: printer

Layout all diagrams contained in the inpuit fil e that was produced by the
CAPEGen Compiler. Creates layout files as follows: state transition
diagrams . s -> .sd, state/event diagrams . se -> . sed, and SDL
diagrams. sdl ->. sdd.

Draw the diagrams contained in the inpuit fil e that was produced by the
- | option of the CAPEDraw Viewer. If bath -1 and - d are spedfied,
then layout is performed before drawing and the input file is expeded
to be a CAPEGen Compiler diagram file. Otherwise the input file is
expeded to be a CAPEDraw Viewer layout file.

Only valid if - d is edfied. The pattern is matched against the state
names of diagrams held in the layout file. Only diagrams that match
the pattern are output. The pattern consists of literal case insensitive
letters, ? which matches any one daracter, and * which matches all
remaining characters. Thus the pattern U0?_* would match
U0O0_Null andU01 _Calllnitiated q93lstates.

Only valid if -d is gedfied. This switch requests graphics output to
the printer seleded. The supported graphic printer and paper size
choices are shown in the figure below. Some seledions produce Adobe
PostScript® files and some send the graphics output to the printer
asumed to be device LPT1: with landscape orientation. The Adobe

PostScript® (.PS) and Encapsulated PostScript outptt files (. EPS) can
be used by word procesors to insert CAPE graphics into documents.
The output graphics file is gedfied by giving a file name with no
extenson (eg., -p:eps:afile will create the output file
afile. eps).

2-8

Chapter 2 Quick Start

-l pt2

- nogr oup

- nopagenum

-notitle

-portrait

-rotate

Only valid if bath - d and - p are spedfied. This direds the output to
printer port LPT2: . Thedefault printer port isLPT1: .

Only valid if - | is gedfied. By default similar referencelines in a
diagram are grouped together to form one line. This gmplifies the
appearance of complex diagrams. This sippresses the grouping action.

Only valid if - d is edfied. By default the diagram page number is
placed at the battom right of the diagram. This sippresss the page
number.

Only valid if - d is edfied. By default the diagram title is placed at
the battom center of the diagram. This suppressesthetitie.

Only valid if bath -d and - p are spedfied. This indicates that the
diagram is to be oriented with the vertical axis parallel to the longest
paper edge. The default is landscape where the vertical axisis paralle
to the shortest paper edge.

Only vaidif - d and - p spedfies aform of Adobe PostScript® output.
The next sedion demonstratestheuse of - portrait and-rotate
for PostScript output.

Adobe PostScript® output is used to prepare documentation graphics and high resolution printer
output. Most word processng programs support the insertion of Encapsulated PostScript (EPS)
graphics with size scaling. Some word processors are unable to rotate the graphic upon insertion.
This requires four orientations to be supported. The figure below shows the four orientations

supported.

def aul t

-portrait -rotate -portrait
-rotate

Figure 21. Adobe Postscript Output Page Formats

If you are sending your CAPE graphics directly to a PostScript printer that defaults to
printing in the default " portrait" mode you will need to spedfy the -portrait and -

r ot at e options.

2-9

Bayfront Technologies CAPE Tods™ Users Manual

-p:PostScript
-p:PS<filename>
-p:EPS<filename>
-p:Epson_FX80_Low
-p:Epson_FX80_Medium
-p:Epson_FX80_High
-p:Epson_FX100_Low
-p:Epson_FX100_Medium
-p:Epson_FX100_High
-p:Epson_LQ850_Low
-p:Epson_LQ850_High
-p:Epson_LQ950_Low
-p:Epson_LQ950_High
-p:Epson_LQ1050_Low
-p:Epson_LQ1050 High
-p:HPLJ Letter Low
-p:HPLJ Letter Medium
-p:HPLJ Letter High
-p:HPLJ Legal_Low
-p:HPLJ Legal_Medium
-p:HPLJ Legal_High
-p:HPRI_Low
-p:HPRJ_High

Figure 22. Graphic Printers and Formats Supported by the CAPEDraw Viewer

PostScript Printer

PostScript File

PostScript EPS FRle

Epson FX80
Epson FX80
Epson FX80
Epson FX100
Epson FX100
Epson FX100
Epson LQ850
Epson LQ850
Epson LQ950
Epson LQ950
Epson LQ1050
Epson LQ1050
HP Laser Jet Il
HP Laser Jet Il
HP Laser Jet Il
HP Laser Jet Il
HP Laser Jet Il
HP Laser Jet Il
HP Raint Jet
HP Raint Jet

1800x1800 dpp 8.5"x11.0" paper
1800x1800 dpp 8.5"x11.0" paper
1800x1800 dpp 8.5"x11.0" paper
60x 72 dp, 8.5"x11.0" paper
120x 144 dp 8.5"x11.0" paper
240x 216 dp 8.5"x11.0" paper
60x 72 dp, 13.6"x11.0" paper
120x 144 dp 13.6"x11.0" paper
240x 216 dp 13.6"x11.0" paper
180x 180 dp 8.5"x11.0" paper
360x 360 dp 8.5"x11.0" paper
180x 180 dp 11.0"x11.0" paper
360x 360 dp 11.0"x11.0" paper
180x 180 dp 13.6"x11.0" paper
360x 360 dp 13.6"x11.0" paper
100x 100 dp 8.5"x11.0" paper
150x 150 dpp 8.5"x11.0" paper
300x 300 dp 8.5"x11.0" paper
100x 100 dp 8.5"x13.0" paper
150x 150 dp 8.5"x13.0" paper
300x 300 dp 8.5"x13.0" paper
90x 90 dp, 8.5"x11.0" paper
180x 180 dp 8.5"x11.0" paper

2-10

Chapter 3 Protocol Definition Language

3. Protocol Definition Language (PDL)

3.1

3.2.

3.2.1.

Overview

The purpose of the Protocol Definition Language (PDL) is to define the essential structure of a
protocol without beaming mired in the detail s of a particular programming language. Sincethe
PDL definition is used to generate mde, diagrams, analysis reports, and simulations we have
attempted to remove dements pedfic to ane of these areas from the language. When there are
options related to these diff erent processs, they are spedfied when the processis invoked.

PDL Elements

Most protocol layers are ammposed of one or more state machines. The state machines of the
protocol layer may enable, disable, and interact with each other. They share the data and queue
definitions for the layer. With this understanding the primary unit of definition in PDL is the
state machine. Thefigure below presentsa simple PDL definition.

[example protocol state machine
multili ne comments in brackets |

sml { InitialState = Statel;

state Statel::
Eventl -> Actionl, Action2 >> State2;
Event2 -> Action3; [goesto Statel])
Event3 |
Event4 -> Action2 >> State2; [Event3 or Event4]
default -> Action?, [any other events]
state State2::
Eventl1-> Action4;
Event2-> Action5, Action6 >> Statel;

Figure 23. Example PDL Definition

In the abowe figure the reserved words and punctuation are shown in bdd. The name of the
protocol layer state machine sl is given first foll owed by the definition of the initial state of the
protocol.

Spacing, Comments and Syntax Diagrams

The fields of a PDL definition do not have to be aligned. 1t is a good idea to align the fields to
make the definition easier toread. Whitespace which includes gaces, tabs, carriage returns, line
feals, and form feeds may be fredy inserted anywhere a single spaceis accepted. Whitespaceis
accepted between all keywords, punctuation, identifiers, and numbers.

Comments are enclosed in square brackets ([]). They may contain multiple lines and be
included anywhere spaces are accepted.

In the syntax diagrams given below the reserved words and punctuation are shown bdded in
ovals. The invocation of another syntax diagram is down by a redangle labeled with the
diagram name. Some single dharacter syntax diagrams are not shown. nuner al stands for any
one numeral character O through 9. al phabetic stands for any one upper or lower
alphabetic character A through Z and a through z. under scor e stands for the underscore
character _. No whitespaceis all owed between these single dharacter syntax diagrams.

Bayfront Technologies CAPE Tods™ Users Manual

3.2.2. ldentifiers

Identifiers used in PDL definiti ons are a maximum of 36 characters long.

Identifier

alphabetic

underscore

alphabetic
numeral
underscore

H

Figure 24. Identifier

The identifiers must not conflict with the reserved words of PDL. This ched is case insensitive
to all ow for the generation of code in case insensitive languages. The reserved words include:

action alocate assgn bresk

dedl ocate deassgn dec event

inc Initi al State macro recv

resetflag RestartTimer send setflag
setvalue signal StartTimer StopAll Timers
Stop Timer State timeout

TimerRunning

Figure 25. PDL Reserved Words
3.2.3. Numbers

Numbersin PDL are unsigned integers with the usual syntax.

number

\—>| numeral Y

v

Figure 26. Numbers

These are used to passconstants to user supgied routinesin actions.

Chapter 3 Protocol Definition Language

3.3. PDL Structure

3.4.

protocol state machine

c initial state state H

event macro

action macro

Figure 27. PDL Structure Syntax

The basic structure of a PDL definition identifies and defines the protocol state machine and
context. Theinitial identifier provides the state machine name.

initial state

Tlnitialtate >—»(=)—[identifier |—>(;)

Figure 28. PDL Initial State Syntax

The initial state rule identifier provides the beginning state when the protocol state machine is
enabled. Therest of the definition is a series of state definitions. The optional macro definitions
at the end of the state definiti ons are a convenient shorthand for spedfying repetiti ve parts of the
protocol definition. Noticethat the entire set of state and macro definitions must be enclosed in
set braces{}.

States

state

@ identifier—v®—b events (—»

Figure 29. PDL State Syntax

A dtate definition starts with the reserved word st at e and an identifier that names the state.
The set of events that foll ow spedfy the events that are handled by the state machinein this gate.
Each event spedfies what triggers the particular event, what actions are to be taken, and what
state transition (if any) to make after taking those actions. Within a state all of the event triggers
must be mutually exclusive. This means that one outside stimulus can never trigger two state
events. If an event is not handled in a state, then no actions are taken and no state transition
takes place

Bayfront Technologies CAPE Tods™ Users Manual

3.5. Events

events

.

Each event spedfies the set of triggers for a trangition in the state machine. The actions to take
upon this transition are also spedfied. Transition to a new state in the state machine may be
spedfied asthefinal action intheact i ons. An event macrois just a convenient way to spedfy
the same information under the given macro name. Event macros are spedfied after all state

definitions.

Figure 30. PDL Event Syntax

The eternal events that moves the state machine along are spedfied as event triggers.

event trigger

.

identifier

The basic event forms may be combined into atrigger using alogical or (|) to mean that any one

Figure 31 PDL Event Trigger Syntax

of the given eventstriggers the actions to be taken.

identifier

r ecv(message,queue)

This name is the name of an external user indicated event.
This is the name of an external event that the user-written
event procesor will use to signal to the Bayfront-supied
state machine exeautor that the external event has occurred.
This allows the user to completely define the ecternal events
and control the protocol state machine transiti ons.

This event is indicated when a message of the given type is
receved on the given queue, streem, or mailbox. The
indicating constant for this event is named as
"r queue_message” on code generation. As an example the
PDL event recv(Abort Msg, Net) would be indicated as
the named constant rNet _Abor t Msg to the state machine
exeautor.

34

Chapter 3 Protocol Definition Language

3.6.

ti meout (timer) This event is indicated when the given timer expires. The
event is renamed to "timer_t i neout " on code generation.
Thusthe event t i meout (AckTi mer) would be indicated as
the named constant Act Ti mer _ti meout .

recv(defaul t, queue) Thiseventisindicated when any message type except the ones
spedfically defined for this gate via the
recv(nmessage, queue) event have been receved on the
given queue, stream, or mailbox. An event processor does not
explicitly indicate this event with a named constants as it does
for the abowe three &ent types. Instead the esent processor
implicitly indicates this event by indicating any explicit r ecv
message e/ent for the given queue that is not used in any
trigger in this date.

timeout (defaul t) This event is indicated when any timer timeout is ending
except those timeouts gedfically defined in this gate. An
event processor does not explicitly indicate this event. Instead
the event processor implicitly indicates this event by indicating
any explicit t i meout event that isnot used in any trigger in
this date.

def aul t This event is indicated when any external user indicated event
is pending that is not explicitly part of any trigger in this gate.
This cannot serve as a default event for t i meout and r ecv
events. The abowe two event types srve that purpose. There
does not have to be a default trigger. An event procesor does
not explicitly indicate this event. Instead the event processor
implicitly indicates this event by indicating any explicit
external user indicated event that is not used in any trigger in
this date.

If in a given state an event is indicated that is not part of any trigger, then no actions are
performed. An example would be a message MsgType arriving on a queue MsgQueue. If this
case is not handled explicitly (eg., recv(MsgType, MsgQueue)) or implicitly (eg.,
recv(defaul t, MsgQueue)), then no actions are performed and no state transiti on occurs.

Event Macros

Event macros are an efficient shorthand for spedfying repetitive events that appear in many
states. An example would be the "disconned request recaved go to the idle state” kind of
operation. The shorthand is invoked by the keyword macr o and the name. The event macros
are defined after all of the states have been spedfied.

event macro

GvenD> w@ace> { idenier | () +[evens

Figure 32. PDL Event Macro Syntax

The single macro identifier can expand to ane or more event trigger to action sequences. Event
macros cannot be nested. The meaning of the macro is as if the macro was expanded dredly for
its name. If an action causes a transition to the same state, then the state is the state where the
macro usage ocaurred.

Bayfront Technologies CAPE Tods™ Users Manual

3.7. Actions

Actions modify the protocol exeaution environment as the state machine makes transitions from
state to state.

actions

v

factor ©
(Taeo>

Figure 33. PDL Actions Syntax

Each event can trigger zero a more actions. More than one action is sparated by commas.
Optionally the last action in an action sequence @n cause a transition to another state. The >>
syntax with a state identifier requests the transition to that state. If no transition action is
performed, then the state machine remains in the same state. Aswith event macros an entire set
of actions for an event trigger including a state transition may be spedfied as an action macro.
The action macro invocation may foll ow some actions particular to a state/event pair.

Most individual actions call user supgied routines. Some kinds of actions, like message sending,
areidentified by syntax to isolate mncepts needed to analyze the protocol.

action

v

[identiier | »(.) [identifier | »())

identifier

external arguments switch action

Figure 34. PDL Action Syntax

Thebr eak actionisonly legal in the mntext of a switch action.

3.7.1. Actionson Timersand Messages

The keywords Rest art Ti mer, send, StartTimer, St opAl | Ti mers, StopTiner,
and Ti mer Runni ng identify certain actions and utimately call user supgied routines.

send(message, queue) This action generates a call to the user supplied routine
called "squeue_message’. As an example the PDL action
send(Rel ease, Net) would call the user-supdied
routine sNet _Rel ease with context. This routine is
responsible for assmbling the messge using context
information and putting it on the given queue.

Chapter 3 Protocol Definition Language

StartTiner(tinmer) This action generates a call to the user supgied routine
caled Start Ti mer with a generated timer code as an
argument. Theroutine starts the given timer.

StopTi mer (tiner) This action generates a call to the user supplied routine
caled St opTi mer with a generated timer code as an
argument. The routine stops the given timer.

RestartTimer (tiner) This action generates a call to the user supgied routine
caled Rest art Ti mer with a generated timer code as an
argument. The routine restarts the given timer.

St opAl | Ti mer s Generates a cal to the user-supdied routine
St opAl | Ti ners that stops all timers defined for the
state machine.

Ti mer Runni ng(ti nmer) Calls the user supgied routine Ti mer Runni ng with a

generated timer code. The routine returns one of the
defined values YesRunni ng or NoRunni ng whether or
not the timer is running. This action is used in switch
actionsto be discussed later.

3.7.2. Action Callsto User Routines

Thei dentifi er acceptable as an action refers to a user-supgied action routine with the same
name. These routines may be passed arguments as siown bel ow.

external arguments

o

Figure 35. PDL External Routine Argument Syntax

The external argument nunber refers to an unsigned 16 bit integer. The external argument
i dentifier refersto user supdied variables in the protocol exeaution environment that may
be manipulated by user supgdied action routines.

3.7.3. Switch Actions

Many times the protocol state machine is controll ed by environmental conditions not available in
the state machine mntext. To test these @nditions we use a switch action. In the acti on
syntax diagram a switch action is precaded by an i denti fi er giving the name of an user
supdied external routine and optionally ext er nal ar gunent s. In a switch action a value
returned by the user routine is tested. The all to the user routine is foll owed by the switch/case
syntax below.

action macro

GO »Cace> { idenitier |+ [actons] *OD

Figure 36. PDL Switch Action Syntax

Bayfront Technologies CAPE Tods™ Users Manual

Thereareaseriesof i denti fi er andacti on pairs. Theidentifier stands for a discrete value
constant that is returned by the user routine. The actual value is defined by the @de generator.
The actions asociated with the given return value are @ll ed by the state machine exeautor.

A switch action appearsin a PDL definition as foll ows:

check_msg {
msg ok ->...;
msg_too_small ->...;
msg_too large-> ... ;
msg_format_error -> ... ; }

In this example check_nsg is a user-supdied action routine that returns the switch return
namesnsg_. Therestrictions on switch return names include:

1 Return names must be unique to the spedfic switch statement. For example if the switch
statement check _nsg returns the value nsg_ok, then no aher switch statement except
check_nsg can usethenamensg_ok.

2. Switch functions must return the same number of switch return values each place the
function is called. For example if the switch statement chedk_msg returns four switch

return values, nmsg_ok, nmsg_too_|I arge, nmsg_too_smal |, and
nmsg_format _error, then all instances of check_nsg must return these four switch
return values.

Notice that this g/ntax is reaursive on the acti ons rule. The br eak keyword syntax may
only be used inside the mntext of a switch action. It causes exeaution to continue with the action
after the enclosing switch action.

3.8. Action Macros

3.9.

Action macros are an efficient shorthand for spedfying a complete list of actions and state
transitions. An action macro invocation may be used anywhere act i ons are expeded. This
includes after event triggers inevents and inside of anh switch action. Aswith
event macros, action macros are treated as if they were expanded where they are invoked. They
are very efficient in exeaution with minimum calli ng overhead.

Action macros are defined with event macros after al states have been defined. Their definitions
have the foll owing syntax.

action macro

Gstion>»(Tacio> O O
Figure 37. PDL Action Macro Syntax
Action macro definitions may not be nested.

Err or Recaovery and Reporting

If a syntax error occurs during the parsing of a PDL program, a syntax error will be reported and
the parser will attempt to recover and report more erors (DOSUnix) or the parsing will halt and
the airsor will be positioned at the aror in the PDL edit window (Windows). Semantic arors
are analyzed after the syntax has been parsed. Any kind of error will inhibit the aeation of
output files. The earorsreported by the CAPEGen Compil er are given in Appendix A.

Chapter 3 Protocol Definition Language

3.10. PDL Example

The PDL definition illustrated below uses many linguistic constructs available in a PDL
definiti on.

[The foll owing exampl e ill ustrates many of the syntax feaures of the pdl.]

ex_ch3{ InitialState = S1;

state S1:
E1 -> swl { [switch action]
rtnl-> Al, bre; [after Al execute A6 below]
rtn2-> A2, A3>> 82,
rtn3-> A4, macro MA5; [execute A4, gao action macro MA5]
rtng ->; [no actions triggered, return]
}, A6 >> S2; [action after swl switch action]

E2 -> sw2(p1,10) { [switch action with passed parameters]
rtn5-> bree; [exit sw2 and execute A7 below]
rtn6-> A7 >> Si,;

}, A7 >> S2;

E3->; [no actions are triggered]

state S2:

macro ME12; [goto macro ME12 below]

E3-> Al1, A12(p1, p2), A13 Al4>> SI;

[note: only action macros can be call ed within an event macro]
event macro ME12:
E1| [trigger on event E1 or E2]
E2 -> A8, macro MAS5; [execute A8, gato action macro MA5]

[note: no ather macros can be call ed within an action macro]
action macro MAS:
A9, A1G; [execute ations A9 & A0, no state change]

}
Figure 38 PDL Syntax Example

Noticethat the example abowve uses an action macro inside of an event macro.

3.11. PDL Restrictions

A summary of the language restrictions is given below.

1. Event macro definitions may not be nested.

2. Action macro definitions may not be nested.

3. Thebr eak action isonly legal inside the @mntext of a switch action.

4. All switch actions based on the same user supgied function must handle the same result

Cases.

There @n only be one def aul t event for a state. Although a state definition may

contain one exch of def aul t,recv(def aul t, queue) ,andt i neout (defaul t).

6. There an beonly oner ecv(def aul t, queue) event in a state for each queue used in
the state machine.

7. There an beonlyonet i meout (def aul t) event for a state.

8. An event not included in any trigger in a state performs no gperation when indicated by
the event processor in that state.

o

Bayfront Technologies CAPE Tods™ Users Manual

3-10

Chapter 4 C CodeFiles

4. C CodeFiles

4.1. Overview

The CAPEGen Compil er generates two files when the capegen - ¢ option (DOS/Unix) or the
Opt i ons| Conpi | e] C Code Ceneration File menu options (Windows) are seeded.
These files include the state machine header file (. h) and the protocol state machine table file
(- ¢). These files are generated from the input PDL file and are cwmpilable by an ANSI C
compiler. Thefigure below ill ustrates the process of constructing a protocol implementation.

Protocol
. Specification .
Protocol
Definition
File ‘
+ (PDL) Options:
l ¢ (DOS/Unix) , CSCode State Machine A o P ST Protocol
Bayfront Options|Compile| tate Executor T Actions + Primitives . — mplementation
C Code Tables LA e -
CAPEGen File
Compiler (Windows)
-a (DOS/Unix)

Action Prototype File
Options|Compile|
Action Prototype File
(Windows)

User Supplied Information or Routines

Figure . C Code Table File Generation

The state tables are used to drive the Bayfront-supgied state machine exeaitor (sm exec. c).
When the state machine table file is linked with the Bayfront-supfied state machine exeautor

(sm_exec. c¢), the user-supdied actions, the user-supgied event handler and the user-supgied
operating system primiti ves, a protocol implementation results.

The figure below describes the architecture of the resulting protocol implementation.

Bayfront Technologies CAPE Tods™ Users Manual

4.2.

Events to
Operating System

Events from IJ:

Operating System State Tables
i l Action Primitive
Action Primitive

Event ' State Machine '
Processor

T

Executor Action Primitive
Action Primitive
Action || Primitive

Figure 40. Protocol Layer Architecural M odel

This architedure is discused in detail in Chapter 1. Briefly a user-written event processor
stimulates the state machine exeautor with external events (e.g., receved messages, timeouts,
interrupts, etc.). The state machine exeautor is sipdied by Bayfront Technologies in sourceform
and is discused in Chapter 5. The state machine exeautor implements a protocol state machine
by interpreting state tables output by the CAPEGen Compiler. There is at least one set of state
tables for each protocol state machine in each communications layer, realtime process or
client/server module. Also for each state machine there is a set of user-written actions. These
actions affed the operating environment through user-written primitives.

For explanation purposes we will be using the protocol definition file q931. pdl which is
included in the exanpl es diredory of the Bayfront CAPE Tod product disk. The name of this
PDL state machine is q931. Invoking capegen with the - a option (DOSUnix) or the
Opt i ons| Conpi | e| Action Prototype File menuoptions (Windows) on q931. pdl

results in the generation of the action prototype file (q931. act) which is discussed in Chapter
6. Invoking capegen with the - ¢ option (DOSUnix) or the Conpi | er/ Opti ons/ Code
Ceneration Fileonqg931. pdl resultsin two files: the protocol/state machine header file
(q931. h) and the protocol/state machine table file (q931. c). The ontents of these fil es will
be discussed in the remaining sedions of this chapter. All of these files are shown in their
entirety in the CAPE Todsexanpl es diredory.

This chapter presents an interpretive approach to protocol implementation that minimizes gace
instead of exeaution time. 1t is Bayfront Tedchnologies experiencethat the most important part of
systems design and implementation is to get the protocol to work and then optimize.
Optimization should only be direded toward the 10% of the cde that is exeauted 90% of the
time. In the architedure presented in Chapter 1 this "inner loop" will be located in the user-
supdied event processor, actions, or primitives. Optimize the primitives first the actions snd
and the event procesor third. Optimizing the entire design leads to individual designer
"craftsman” efforts that are inflexible and hard to maintain by anyone except the original author.

Protocol/State Machine Header File Contents
The header file produced for a protocol state machine (. h) contains the foll owing definiti ons:

1 protocol state definitions

2. protocol event definitions

3. timers(if defined in the PDL fil€)

4 switch action return values

5 external action function dedarations

Chapter 4 C CodeFiles

Each of these header fil e definiti ons are discussed in the sedions bel ow.

4.2.1. State Definitions

Constants for al the states contained in the PDL file are defined alphabetically in the state
machine header file.

[* ---- States ---- */

#define UOO_Null O

#define UO1_Call Initiated 1
#define U02_OverlapSending 2
#define U03_OutgaingCall Proc 3
#define UO4_Call Delivered 4
#define U0O6_Call Present 5
#define UO7_Call Received 6
#define U08_ConReq 7

#define U09_IncomingCall Proc 8
#define U10_Active 9

#define U11_DiscReq 10
#define U12_Discind 11
#define U15_SuspendReq 12
#define U17_ResumeReq 13
#define U19_ReleaseReq 14
#define U25_OverlapReceiving 15

#define 931 MaxStates 16
#define q931_Initi al State UOO_Null

Figure 41. State Definitionsfrom q931h

Users dhould include this file when coding their user-supgied event processor, actions, and
primitives. User-supdied codes sould only refer to the states by name since a change to the
PDL definition could change the underlying val ues.

The maximum number of statesis defined as q931_Max St at es. The state machine structure
uses the maximum states definition to chedk for out of bounds gates during the exeadtion of the
protocol/state machine (seefilesm exec. c).

The initial state name is defined as 931 I niti al State. Theinitial state name is used to
initi ali ze the state machine. The airrent state is kept in the cntext block which is discussed in
Chapter 5.

4.2.2. Event Definitions

All events contained in the PDL file are listed aphabetically in the state machine header file.
The user-supdied event procesor, actions, and primitives dould include the header file and
refer to the events by name.

It is the function of the user-suppied event processor (seearchitedure in Chapter 1) to trandate
an incoming operating system event into one of the event definitions in the header file before
calling the state machine exeautor (sm exec). As discussd in Chapter 3 some events are
renamed from their PDL definitions (eg., recv(Alerting,net) bemmes
rnet _Al erting). The eventsfor q931are shown below.

/* ---- Events ---- */

#define T302_timeout 0
#define T303_timeout 1
#define T304 _timeout 2
#define T305_timeout 3
#define T308_timeout 4
#define T309_timeout 5

Bayfront Technologies CAPE Tods™ Users Manual

#define T310_timeout 6
#define T313_timeout 7
#define T318_timeout 8
#define T319_timeout 9
#define rnet_Alerting 10
#define rnet_Call Proc 11
#define rnet_ConAck 12
#define rnet_Connect 13
#definernet_DL_Est_Conf 14
#definernet_DL_Est_Ind 15
#definernet_DL_Rel_Ind 16
#define rnet_Disc 17

#define rnet_Info 18

#define rnet_Notify 19
#define rnet_Progress20
#define rnet_Release 21
#define rnet_ReleaseComp 22
#define rnet_ResumeAck 23
#define rnet_ResumeRej 24
#define rnet_SetUp 25
#define rnet_SetUpAck 26
#define rnet_Status 27
#define rnet_StatusEnquiry 28
#define rnet_SuspendAck 29
#define rnet_SuspendRej 30
#define rnet_UnrecognizedMsg 31
#define ruser_AlertingReq 32
#define ruser_DiscReq 33
#define ruser_InfoReq 34
#define ruser_MorelnfoReq 35
#define ruser_NotifyReq 36
#define ruser_ProcReq 37
#define ruser_ProgressReq 38
#define ruser_RejReq 39
#define ruser_ReleaseReq 40
#define ruser_RestartReq 41
#define ruser_Resume 42
#define ruser_SetUp 43
#define ruser_SetUpRsp 44
#define ruser_SuspendReqcallid 45

#define q931_MaxEvents 46
Figure 42. Event Definitions from q931h

The figure abowe ill ustrates that the q931 events all come from only three sources: timeouts,
messages from the net queue, and messages from the user queue. There are no user defined
custom events.

4.2.3. Timer Defines

Timer definitions are aeated from the appearance of the spedal actions Start Ti ner,
St opTi mer and St opAl | Ti mers. Aswith state and event definitions, user routines that deal
with timers sould include the header file and only refer to timers by their defined names. The
user-supdied action routines auch St art Ti mer and St opTi mer take the timer as a pased
parameter.

[* ---- Timer Defines ---- */
#0efine T302 0
#0efine T303 1

4-4

Chapter 4 C CodeFiles

#0efine T304 2
#0efine T305 3
#0efine T308 4
#0efine T309 5
#0efine T310 6
#0efine T313 7
#0efine T318 8
#0efine T319 9

Figure 43. Timer Definitions from q931h

4.2.4. Switch Action Return Values

Switch action return defines are the values returned from the PDL switch actions. The state
machine exeautor (sm exec. c) performs a runtime bounds ched on the return value every
time the switch action is called. Out of bounds return values will cause the sm exec to
immediately return to the aller with a value indicating an out of bounds condition (see state
machine eeautor discusson in Chapter 5). In the q931. h example the switch action
Act Opt i on returns only two values, YesAck with a value of 0 and NoAck with a value of 1.
Users dould code the Act Opt i on action function by including the header file and using the
YesAck and NoAck definitions to return one of these two values.

[* ---- Switch Labels ---- */

[* 'AckOption' return values */
#define YesAck O
#define NoAck 1

[* 'AnyTimersRunnng' return values */
#define NoTimersRunrning 0
#define YesTimersRunnng 1

[* 'CSZeroNonZero' return values */
#define CSZero 0
#define CSNonZero 1

[* 'CauseOption' return values */
#define C1 0
#define C2 1

[* 'CheckSetUpMsg' return values */
#define SetUpOk 0

#define SetUpManElementMissng 1
#define SetUpManElementError 2

/* 'CheckStatusCsField' return values */
#define CsZero 0
#define CsNotZero 1

[* 'CompatibleStateCheck' return values */
#define Y esCompatible O
#define NoCompatible 1

/* 'DLOption' return values */
#define DLStatusOpt 0
#define DL StatusEngOpt 1
#define DLDefaultOpt 2

/* 'DLRelOption' return values */
#define Null Option 0
#define NoNull Option 1

/* 'FirstTimeOut' return values */

Bayfront Technologies CAPE Tods™ Users Manual

#define YesFirst 0
#define NoFirst 1

I* 'ProgressType' return values */
#define InterNetworking 0
#define Tone 1

/* 'RejectOption' return values */
#define YesReject 0
#define NoRegject 1

/* 'RelOption' return values */
#define RelOpt 0
#define Rel CompOpt 1

[* 'StatusEngOption' return values */
#define Y esEngOption O
#define NoEngOption 1

[* TimerRunning return values */
#define YesRunring O
#define NoRunring 1

/* number of unique switch labels =32 */

Figure 44. Switch Function Return Valuesfrom q931h

4.2.5. External Action Function Dedar ations

4.3.

The external action dedarations refer to the user-supgied protocol or state machine actions. All
actions except switch actions dhould return a value of one to indicate succesful completion.
Actions that return a value other than one @use the state machine exeautor to quit triggering the
actions and return to the event processor. SeeChapter 5 for more details. All actions are pased
an Event Control Block pointer whose type is user defined, e.g., void. For more information on
the possgble structure of this type seeChapter 5.

[* ---- Action Subroutine Declarations ---- */
extern int AckOption();
extern int AnyTimersRunning();
extern int BChanMaintenance();
extern int CSZeroNonZero();
extern int Call RefSelection();
extern int CauseOption();
extern int CheckSetUpMsg();
extern int CheckStatusCsField();
extern int CompatibleStateCheck();
extern int DLOption();

extern int suser_Statusind();
extern int suser_SuspendConf();
extern int suser_Timeoutind();

Figure 45. Portion of External Action Prototypes from q931h

Protocol/State Machine Table File Contents

The state machine table file (. ¢) contains gructures and tables used by the state machine
exeautor (sm exec. ¢, seeChapter 5). Wewill continue using q931. pdl asan example. The
information in the foll owing sedions comes from q931. ¢ which can be found in the Bayfront

CAPE Tod ™ product disk under the exanpl es diredory.

Chapter 4 C CodeFiles

The user does not have to know about the inner workings of this file or the interaction
between this file and the state machine exeautor to implement protocols or state machines.
The information in this sdion is included for users who wish to know how the protocol state
machine isimplemented.

4.3.1. Includefiles

The state machine table file, q931. ¢ includes bath the Bayfront CAPE Tods header file,
cape. h, and the state machine header file q931. h (seeprevious fdion). The cape. h file
(seeFigure below) contains gructure prototypes used to define the state machine such as SWIBL
(switch table), AAENnt r y (action table entry), and SM(state machine structure). The PDL header
file ontains necessary defines such as the number of states and eventsin the protocol definition.

4.3.2. Action Parameter Definitions

The action parameter definition sedion of the q931. ¢ file @mntains al non-numeric action
parameters except the user defined Event Control Block pointer pECB parameter.

[* ---- action parameter definitions ---- */
int error; /* 2type? from action: 'suser_SetUpComplind */
int ok; [* 2type? from action: 'suser_SetUpComplind */

Figure 46. Action Par ameter Definitions

The parameter types are defaulted as integers and will contain the / * ?t ype?*/ comment as a
reminder these types were defaulted to integers and can be danged. Also contained in the
comment will be the last action that uses this parameter. The user may change these parameters
as necessry. Use caution. Modifications of q931. ¢ will be lost if the CAPEGen Compil er
code generation option - ¢ isused to regenerate thisfile.

4.3.3. Switch Return Value Table and the Switch Table

The switch table is an array of tuples each containing an index into the switch return value table
and the number of switch return values defined for this switch statement. Both tables as
generated from the q931pd are shown below.

/* Indicesinto the 931_SwLblVect array, # of return values */
static SWTBL q931_SwThl[] = {

{0, 2},

{2 2},

{4, 2},

{6, 2},

{8 2},

{10, 2},
{12 2},
{14, 2},
{16, 2},
{18, 3},
{21, 3},
{24, 2},
{26, 2},
{28, 3},
{31, 2},
{33 2},
{35 2},
{37, 2},
{39 2},
{41, 2},
{43 2},

Bayfront Technologies CAPE Tods™ Users Manual

{45, 2},
{47, 2},
{49, 2},
b

Figure 47. Switch Table from q931c

/* Switch Return Vaue Table (indices into the Action Vector Table) */

static int 931 _SwLblVect[] ={

106 107, [* 'AckOption' */

96 97, [* 'AckOption' */

73 74, [* 'AckOption' */

55 56, [* 'AckOption' */

247 248 /* 'AnyTimersRunring */
25Q 252 [* 'CSZeroNonZero' */
1909 191 [* 'CSZeroNonZero' */
272 273 [* 'CauseOption' */

234 235 /* 'CauseOption’ */

9 12, 13 /* 'CheckSetUpMsg */
5 6, 7, [*'CheckSetUpMsg */

15 16, /* 'CheckStatusCsField' */
253 254 /* 'CompatibleStateCheck' */
24Q 241, 242 /* 'DLOption */

244 246 /* 'DLRelOption' */

184 186 [* "FirstTimeOut' */

46 48, [* "FirstTimeOut' */

67 69, [* 'ProgressType' */

114 115 /* 'RejectOption’ */

24 26, /* 'RelOption' */

17 19, /* 'RelOption' */

27Q 271, [* 'StatusEngOption' */
232 233 [* 'StatusEngOption' */
59 60, /* TimerRunning' */

b

Figure 48. Switch Return Value Table from q931c

For example the first entry { 0, 2} in the switch table indicates that in the zero position of the
switch return value table the AckOpt i on switch returns two values. Referring to the switch
return valuetable if AckQOpt i on returns YesAck (value 0) the tuplein the action array starting
at 106 will be exeauted and if AckOpti on returns NoAck (value 1) the tuple in the action

array starting at 107 will be exeauted.

4.3.4. Action Routinesthat PassParameters

All actions that passparameters other than the Event Control Block pointer pECB are indiredly
Indiredly calling the actions allow the passd
parameters to be included in the action call. The user-supgied timer operations are an example
of an action routine that takes a parameter becuse they must be passed the timer and pECB . All

caled dwe to ANSI C language limitations.

parameters other than the pECB are defaulted as integers.

[* ---- Action routines which passarguments ---- */
int FirstTimeOutT308 pECB)

void *pECB;

{ return(FirstTimeOut(T308 pECB)); }

int RestartTimerT304(pECB)

void *pECB;

{ return(RestartTimer(T304,pECB)); }

int StartTimer T30 pECB)

Chapter 4 C CodeFiles

void *pECB;
{ return(StartTimer(T309pECB)); }

int snet_Release0(pECB)
void *pECB;
{ return(snet_Release(0,pECB)); }

int snet_ReleaseComp10QpECB)

void *pECB;

{ return(snet_ReleaseComp(100pECB)); }
int suser_SetUpComplndok(pECB)

void *pECB;

{ return(suser_SetUpComplnd(ok,pECB)); }

Figure 49. Portion of Action Routinesthat PassParametersfrom q931c

4.3.5. State/Event To Action Array Jump Table

This composite structure is a two dimensional array which is indexed by the State and Event.
The entries of the state/event table mntains numbers which are indices into the action array table.
Given the state and the event these tables provide the index for the next action list to perform in

the action array table.

static int *q931_StateEvent[] = {

b

g931U00_Null,
g931U01_CadllIniti ated,
0931U02_OverlapSending,
(931U03_OutgaingCall Proc,
q931U04_Call Delivered,
0931U06_Call Present,
0931U07_Call Received,
0931U08_ConReq,
q931U09_IncomingCall Proc,
g931U10 Active,
0931U11_DiscReq,
g931U12 Disclnd,
q931U15_SuspendReq,
931U17_ResumeReq,
931U19 ReleaeReq,
0931U25_OverlapReceiving

Figure 50. State/Event Table from q931c

[* ---- q931Action Vector Jump Table [MaxStates| MaxEvents] ---- */
staticint 931 _UOO_Null[] = {

23 23, 23, 23, 23, 31, 23, 23, 23, 23, 23, 23, 23, 23, 30,

23 29, 23, 23, 23, 23, 20, 22, 23, 23, 4, 23, 14, 27, 23,

23 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 28, 1, 8, 23,

23
b

static int q931_U01_Call Initiated]] = {
212 45, 212, 212, 212, 226, 212, 212, 212, 212, 50, 42, 212, 52, 225
227 224,212 212, 212, 212 212, 39, 212, 212, 214, 36, 217, 216, 212,
212213 212 33, 32, 212 212, 212 212, 212, 212, 215, 212 212, 212

212
b

static int 931_U02_OverlapSending[] = {
212212 78,212 212 88,212 212 212 212 64, 61, 212 70, 87,
83 84, 212 81, 212,66, 221, 220, 212 212 214,212 217, 216, 212,
212213 212 82,57, 212 212 212 212 212 75, 215 212,212, 212,

Bayfront Technologies CAPE Tods™ Users Manual

212

h

static int 931_U03_OutgaingCall Proc]] ={
212212 212 212 212 226,98, 212 212 212 91, 212 212 93, 225
227 224, 222, 219, 212, 89, 221, 220, 212, 212 214,212 217, 216, 212,
212213 212 223 218 212 212 212 212 212 101, 215 212 212 212,
212

h

staticint 931_U04_Call Delivered[] = {
212212 212 212 212 226, 212 212 212 212 212 212 212 104, 225
227 224, 222, 219, 212 212 221, 220, 212, 212 214, 212 217, 216, 212,
212213 212 223 218 212 212 212 212 212 212 215 212 212 212,
212

h

Figure 51 Portion of the Action Arr ay Jump Table from q931c

4.3.6. Action Vedor Table

This dructure is an vedor of tuples containing the actions to be triggered upn spedfic
state/event ocaurrences. It isindexed by the state/event table of the previous dion.

[* ---- Action Vector Table ---- */
static AAEntry 931 ActArray[] ={
/* Null Entry */{0, O, 0}, /* fcn, type, jmp or newstate */
/* Action 1% {CallRefSelection, 1, 521},
/* Action 2% {snet_Resume, 1, 521},
/* Action 3% {StartTimerT318 5, 13},
[* Switch 4 % {CheckSetUpMsg, 3, 10},
/* Action 5% {suser_SetUpind, 1, 5},
/* Action 6% {snet_ReleaseComp96, 5, 520,
[* Action 7 % {snet_ReleaseComp10Q 5, 520,
/* Switch 8 * {CheckSetUpMsg, 3, 9},
/* Action 9% {CallRefSelection, 1, 521},
/* Action 10 ¥ {snet_SetUp, 1, 521},
/* Action 11 % {StartTimerT303 5, 1},
/* Action 12 % {snet_ReleaseComp96, 5, 520,
/* Action 13 ¥ {snet_ReleaseComp10Q 5, 520,
/* Switch 14 ¥ { CheckStatusCsField, 3, 11},
/* Action 15 % {0, 2, 52¢,
[* Switch 16 % {RelOption, 3, 20},
/* Action 17 ¥ {snet_Releasel0], 5, 521},
/* Action 18 ¥ {StartTimerT308, 5, 14},

Figure 52. Portion of the Action Vedor Tablein q931c

Each tuple mntains threefields. One field contains the action to call or a zro for a null action
(i.e., state dhange without action) or goto action/event macro call. Another field contains the
type of tuple. Thefinal field contains the new state transition or an indication of the jump index.

4.3.7. State Machine Definition Structure

This dructure tiestogether all the structuresin the state machine tablefile (q931. c).
[* ---- q931state machine definitions ---- */

SM q931={
931 MaxStates, [* max states */
931 MaxEvents, /* max events */
931 ActArraySize, [* # of entriesin the action array */
931 SwLhblVect, [* Switch return value ActArray indicies */
q931.SwThl, /* SwLblVect index & # of rtn values */

4-10

Chapter 4 C CodeFiles

931 StateEvent, [* state/event to action vector thl */
931 ActArray [* action vector table */

H
Figure 53. State Machine Definition Structure in q931.c

This gructure mntains the maximum number of states, maximum number of events, the action
array size, a pointer to the switch return value and the switch tables, a pointer to the state/event
to action array vedor table and a pointer to the action array. A pointer to this gructure is passed
to the state machine exeaitor (sm exec). See Chapter 5 for an example all from the user-
supdied event procesr to the state machine exeautor.

4.3.8. Interrelations Between Generated Structures

In this chapter we have discussed as an example the static structuresin q931. ¢ generated by the
Bayfront CAPEGen Compiler -c option parsing g931. pdl. The pointer and index
relationships between these structuresis srown below.

Q.931
Info
q931_StateEvent q931_state q931_SwLblVect q931_SwTbl
YesOrNoSwitch
-—1 _.l ——e 2 results
states ‘ % |

dimension|

L 1 *

+—

events dimension
(traditional jump table, jump to actions)
q931_ActArray
fncion | e | S2EO
Ly >
O user routines
TimeOutT308 .
with parameters

]

Figure 54. Relationships between Generated 931 Structures

The table below identifies the C Code structures with the 931 structure names.

C Code Structure g931 Structure Nane
Switch Table g931_SwrThl
Switch Return Value Table g931_SwLbl Vect
Action Routines w/Params func FirstTi neCut T308
State/Event Table g931_St at eEvent
Action Array Jump Table q931_state
Action Vector Table g931_Act Array
State Machine Definition g931

4-11

Bayfront Technologies CAPE Tods™ Users Manual

4-12

Chapter 5 State Machine/Protocol Exeautor

5. State M achine/Protocol Exeautor

The Bayfront-supgied state machine exeator (sm exec. c) is caled from the user-supdied
event procesor with spedfic state and event information: a pointer to protocol state table
information defined by Bayfront and a pointer to the user defined Event Control Block (or
context) structure (pECB).

Protocol
. Specification .
7 7Pr70t(7)c;)I7 “ Protocol
Definition Implementation
\ File
+ (PDL) Options: T
) <coosunn o S [
» State . | State Machine A B
Bayfront Options|Compile| = Tables Executor + Actions '+ Primitives
C Code Generaton | | 4 -
CAPEGen (Windows)
Compiler

-a (DOS/Unix) . .
———— = Action Prototype File

Options|Compile|
Action Prototype File
(Windows)

User Supplied Information or Routines

Figure 55. State Machine Exeautor Use

The state machine exeautor interprets the state table structures described in Chapter 4 and
triggers the actions for the state/event pair. Only one instance of the state machine exeautor is
required for all the protocol state machinesin all | ayers of a protocol stack.

Events to
Operating System

Events from IJ:

Operating System State Tables
i l Action Primitive
Action Primitive

Event ’ State Machine ’
Processor

Tna-

Executor Action Primitive
Action Primitive
Action || Primitive

Figure 56. CAPE Tods Communications M odel

5.1. Callingthe State Machine Exeautor

The all from the event processor to the state machine exeautor has the following C language
syntax:

Bayfront Technologies CAPE Tods™ Users Manual

5.2.

5.3.

sm_exec(SM *pSM, [* state machine structure pointer */
int *CurState, [* ptr to current state */
int CurEvent, [* current triggering event */
void *pECB); [* event control block ptr (context)*/

Several parameters are passd including the protocol or state machine structure pointer (* pSM),
the airrent triggering event (Cur Event), a pointer to the arrent state (* Cur St at e, thisis
updated by sm exec) and a pointer to the user defined event processor control block (* pECB).

The state machine structure pointer (* pSM is contained in the PDL table file generated by the
CAPEGen Compiler (see Chapter 4). The airrent event is the triggering event preprocesed
(eg., trandated into a defined event in the PDL header . h file (see &le event values for
g931in Chapter 4) by the event processor. The triggering event is usually a receved message
from an interlayer communications channel, a timeout messge from the operating system or a
realtimeinterrupt. The event procesor manages the cntext of each event using an event control
block. The Event Control Block is a user defined private structure that is used to pass
information to the resulting triggered actions and primitives. The design of this gructure is very
important and is dependent on the information needed by the spedfic state protocol or state
machine. An example esent processor control block for implementing q931isill ustrated below.

typedef struct ECB {
Q931IMSG *pMsg; /* ptr to the received message */
Q931CCB*pCCB,; /* ptr to the control block for this specific drcuit */
int msgfree /* pMsg can be used for reply flag */

} ECB_t;

Most actions of protocols require the triggering event message, the ontext (e.g., virtual circuit
for g931) and other implementation dependent information to be passed between the event
procesor, the action routines, and primitives.

State Machine Exeautor Return Values

The state machine exeautor (sm exec) performs runtime validation cheds when exeaiting a
protocol or state machine PDL table file. If any of the validation cheds fail, sm exec will
return a status code to the @lling event procesor The user-suppied event procesor can dedde
what to do in each case. The validation cheds include:

1. action index out of range (a corruption of the action array table)

2. switch return value out of range (error in the ading of the switch action)

3. state out of range (bounds error in the airrent state value passed to the state machine
exeautor)

4. event out of range (bounds error in the arrent event value passd to the state machine
exeautor)

5. unknown action typein array (a corruption of the action array table).

The actual return values arelisted in the cape. h fileand are listed bel ow.

/* sm_exec() return values */
#define smOk 0 /* return ok */
#define smActIndError 1 /* action table index error */
#define smSwRtnError 2 /* switch return value aror */
#define smStateError 3 /* state out of bounds */
#define smEventError 4 /* event out of bounds */

5

#define smATypeError /* unknown action type encountered */

State M achine Test/Debug Procedures

One of the most time mnsuming areas of software systems implementation is datic code path
cheking. To debug a protocol implementation the user should create a debuggng event

Chapter 5 State Machine/Protocol Exeautor

procesr that injeds user controlled events into the state machine. The resultant actions can be
examined and debugged. Thiswill allow the dfedive static chedking of nearly all protocol state
machine ade paths including resource bounds chedking. The program below can be used to
manually exercise the q931state machine.

The q931 state machine test program illustrated below takes the airrent state and current event
from the environment line and call s the state machine exeautor. The state machine exeautor will
trigger the actions that print out their names. This program can be found on the Bayfront CAPE
Tod product disk and can be esily modified to test any other state machine. When message
encoding is added to this program a very effedive method of static code path chedking results.

/* test fil e to test the q931state machine */

#include "cape.h" /* SM structure defined here */
#include "q931h" /* q931 MaxStates/q931_MaxEvents defined here */
#include "q931str" /* State/Event namesfile */

extern sm_exec(); /* state machine executor (sm_exec.c) */
extern SM 931, [* from q931c*/

void

main(argc, argv)

int argc;

char ** argyv,

{
int rtnval;
int State, Event, InitState;
unsigned char *pECB = 0;

[* -- read passed state/event from input line -- */

if (argc!=3){
printf("Usage: q93ltest <state #> <event #>\n");
exit(1);

}

if ((InitState = State = atoi(argv{1])) > (q931_MaxStates-1)) {
printf("State out of range (max = %d)\n",q931_ MaxStates-1);
exit(1);

if (Event = atoi(argvi2])) > (q931_MaxEvents-1)) {
printf("Event out of range (max = %d)\n",q931_MaxEvents-1);
exit(1);

}

[* -- display start state/event names -- */
printf("start: State= %s Event= %s\n",
931 _StateNameq State], q931_EventNames[Event]);

[* -- call state machine executor -- */
rtnval = sm_exec(&q931, & State, Event, pECB);

[* -- printout new state and sm_exec return value if not ok -- */
if (State = InitState)

printf(" New State = %s\n",q931_StateNameq[State]);
if (rtnval != smOK)

printf("WARNING: sm_exec return value=%d\n",rtnval);
else

printf(" execute ok\n");

Figure 57. Example 931 State Machine Test Program

The program is created by creating a code file and an action prototype file from the CAPEGen
Compiler from the q931. pdl file (eg., capegen q931. pdl -c -a). Besurethe action

5-3

Bayfront Technologies CAPE Tods™ Users Manual

body text file (act body. t xt) contains the following line to print out the action name and
return ok.

printf("\n"); return(1);

The state machine table file (q931. ¢), the action prototype file (Q931. act), the state machine
exeautor (sm_exec. ¢) and the program abowe (931t est . ¢) are all li nked together to create
the q931state machine test program exeautable.

5.4. Implementation of a Protocol Layer

The following is a general implementation example in pseudo code ill ustrating how the event
procesr and state machine exeautor tie together using AT& T streams operating environment.

[* streams put routine, events that should be serviced immediately */
layer_pu(g, mp)
queue_t *q;
mblk_t *mp;
{
/* initial event processor */
gueue non-priority messages for the layer_service routine and exit

else
service messages that do not require state machines
else
layer_event_procesor(g, mp);
}
[* service routine, scheduled event processng */
layer_service(q)
queue_t *q;
{
mblk_t *mp;
while (mp = getq(q))
layer_event_processor(g, mp);
}
[* event processor routine, prepare data structures & call sm_exec */
void
layer_event_processor(g, mp)
queue_t *q;
mblk_t *mp;
{
translate message type into an event readabl e by the state machine
find specific montext (e.g., circuit for the q931example)
assgn event control block pointers
e.g., for q931
PECB->pMsg = mp, pECB->pCCB = get_circuit(mp)
call state machine executor
eg., rtn_va =
sm_exec(& 931, & pECB->pCCB->state, event, pECB)
hande rtn_val values
e.g., if statelevent out of bounds clea circuit, etc.
implementation cleanup ctail s
e.g., if (bECB->msgfred freemsg(mp);
}

Figure 58. Event Processor Pseudo Code

This example ill ustrates the relationship between the event procesr, the operating system and
the state machine exeautor. The operating system's communications channels are the put and
get g routines. These are spedfic to AT&T's dreams operating system but similar real time

5-4

Chapter 5 State Machine/Protocol Exeautor

5.5.

operating systems have similar communications channel, queue or mailbox management
routines. The event procesor simply handles the messge if no state machine processng is
necessry. Otherwise it builds the necessary structures and calls the state machine exeautor
(sm_exec).

Communications Systems Implementation

Previous sdions discused testing individual state machines and creating protocol layers
utili zing Bayfront CAPE Tods. To implement an entire protocol stack the same procedures for
layer implementation are followed, usually by different members of the implementation team.
Thefilesfor an example system with four layers and their relationship areill ustrated bel ow.

layerlep.c Layer event processors (1 per layer)

layer2ep.c

layer3ep.c

layerdep.c

layerla.c Layer PDL table fil es from "capegen -c layerx.pd”,

layerlb.c where x =1,2,3 or 4 (DOS/Unix) or from the menus

layer2.c ""Compil e|Options|Code Generate" (Windows)

layer3.c there can be multi ple state machines per layer.

layerda.c For example: Layer 4 has four different state

layerdb.c machines generated from four PDL definitions

layer4dc.c

layerdd.c

Sm_exec.c State machine executor (1 per system)

layerala.c State machine action files (1 per state machine)

layeralb.c

layera2.c

layera3.c

layerada.c

layeradb.c

layeradc.c

layeradd.c

sysprim.c System primiti ves (one or more fil es, exported to
entire system)

0s.c Operating system

Figure 59. C Filesto Implement an Example Four Layer Communications System

Bayfront Technologies CAPE Tods™ Users Manual

Chapter 6 Protocol Information File

6. Action Prototype File

The automatic generation of the action prototype fil e offloads much tedious and error prone work
from the implementor. The action prototype file @mntains action routine prototypes for all actions
defined in the PDL file. The action prototype file presents a template of information that is
completed by the user during the nstruction of the user supgied routines. The prototype
definiti ons are sorted alphabetically.

. Protocol
. Specification .
Protocol Protocol
Definition Implementation
\ File ‘
+ (PDL) Options: T
1 -¢ (DOS/Unix) State State Machine =~~~ =~ DT .
Bayfront Options|Compile| © Tables & Executor ~ * Actions + Primitives.
C Code
CAPEGen Generation File
Compiler (Windows)

-a (DOS/Unix)

Action Prototype File

Options|Compile|
Action Prototype File
(Windows)

User Supplied Information or Routines

Figure 60. Action Prototype File Generation

Most of the information that the user needs to write event processors and action routines that
interfaceto the CAPEGen Compil er generated code isincluded in the index under "user supdied
routines' and "user supdied definitions’.

User definable text can be added at the start of the action function prototype file, at the start of
the action definitions and in the action baodies. The text is copied from the actfi | eh. t xt,
act hdr. t xt andact body. t xt filesrespedively.

To generate the action prototype file sdled ether the -a option (DOS/Unix) or the
Conpi |l e| Options| Action File menu options (Windows). This file is typicaly
generated after the PDL file has gahili zed with no further changes expeded. The generation of
the action prototype file will NOT write over an existing file with the same name. If a file
already exists with the same name it should be eased prior to generating another one.

All threeaction prototype insertion files (act fi | eh. t xt , act hdr. t xt and act body. t xt)
use two spedal subgtitution characters. These daracters when found will be substituted by the

names bel ow:
Substitution Replacement
Character Name
! action name
? state machine name

Bayfront Technologies CAPE Tods™ Users Manual

6.1. Action Header File

The ASCII fileact fil eh. t xt isinserted in the beginning of the action prototype file. This
file usually contains source ode ntrol information (YWW6 %3% %J)%is used by some source
code @ntral systems), the protocol/state machine name, the cmpany name and user definable
copyright information. An example of theact fi | eh. t xt fileis siown below.

~
*

*
* %W% %6G% Y%0U%
* ? Actions
* Copyright © 1993Y our Name Here
* All Rights Reserved
*/
I* Revision Log
* RO1 "date" file creaed.
*/

Figure 61 actfileh.txt contents

The figure abowe illustrates an example action function prototype. It contains the spedal
character ? which is replaced with the state machine name. The example also contains urce
code @ntrol header information along with a user definable wpyright notice

6.2. Action Function Prototype Header File

The ASCII fileact hdr . t xt containstext that isinserted before each action function. This text
can assst in the standardizaion of software ading practices. An example file is ill ustrated
bel ow.

Action: !

Purpose:

Input:

Output:

Libraries Used:

Copyright 1993© Y our Name Here

ok * ke /
Figure 62. acthdr.txt contents

6.3. Action Function Body File

The ASCII file act body. t xt contains text that is inserted in each action function. The
example action prototype fil es contained the CAPE Tods exanpl es diredory were mnstructed
using an action function body file similar to the one shown below.

TRACE("Enter action !");
/* code here*/
TRACE("Exit action !I");
return(l);

The example ill ustrated above clls a trace procedure that traces the action and exeaution. The
spedal character ! isreplaced by the action function name. The example also returns a success
value. Note that all action functions sould return a one except for switch actions that return a
range of values.

Chapter 7 Protocol Information File

7. Protocol Information File

The protocol/state machine information file is generated using either the - i option (DOS/Unix)
or the Opt i ons| Conpi l e| Info Fil e option (Windows). Thisfileisatext file (extension
.t xt) that contains information about the protocol/state machine such as the states, events,
actions, messages recaved and sent by the state machine and the timers used. This file @an be
used in bath the support documentation and in the actual source @de. Part of the protocol/state
machine information file from the protocol q931is sown below.

[* ---- q931state machine information fil e ----
State Machine Name: q931

States defined: 16
Events defined: 46
Actions defined: 62

Msgs Received by 'q931
Alerting
AlertingReq
SuspendReqcallid
UnrecognizedMsg
Msgs Sent by 'q931
Alerting
Connect
Timeoutind
Timers Managed by 'q931:
T302
T303
T304
T318
T319
States:

U00_Null
U01_Call Initi ated
U02_OverlapSending

U17_ResumeReq
U19 ReleaseReq
U25_OverlapReceiving

Events:
T302_timeout
T303_timeout

rnet_Alerting
rnet_Call Proc
rnet_ConAck

ruser_AlertingReq
ruser_DiscReq

7-1

Bayfront Technologies CAPE Tods™ Users Manual

ruser_InfoReq
ruser_SetUp

ruser_SuspendReqcalli d
Actions:

AckOption
AnyTimersRunring
BChanMaintenance

suser_SuspendConf
suser_Timeoutind
*/

Figure 63. Q.931 State/Event Names File

7-2

Chapter 8 State/Event Names File

8. State/Event Names File

The State/Event names fil e is composed of two C character arrays containing the state and event
names. Thisfile (extension . st r) is generated using the - n option of the CAPEGen Compil er
(DOSUnix) or the Opt i ons| Conpi | e| Names Fi | e menu sdledions (Windows), seefigure
bel ow.

Protocol ‘
. Specification .

Protocol
Definition
‘ File '
w (PDL) |

!

SEgggm -n (DOS/Unix) _ State/Event
en v i
Compiler Options|Compile| Names File
Names File
(Windows)

Figure 64. State/Event Names File Generation

The purpose of this file is to display the state and event names in ASCIl text for debuggng
purposes. The state/event names fil e from the 931 potocol is srown below.

[* -- State Name Array -- */
static char *q931_StateNames]] = {

"U00_Null",
"U01_CallIniti ated",
"U02_OverlapSending",
"U03_OutgaoingCall Proc",
"U04_Call Delivered”,
"U06_Call Present”,
"U07_Call Received",
"U08_ConReq",
"U09_IncomingCall Proc",
"U10_Active",
"U11_DiscReq",
"U12_Disclnd’,
"U15_SuspendReq",
"U17_ResumeReq",
"U19 ReleaseReq",
"U25_OverlapReceiving",
b

[* -- Event Name Array -- */
static char *q931_EventNames[] ={

"T302_timeout",
"T303_timeout",
"T304_timeout",
"T305_timeout",
"T308_timeout",
"T309_timeout",
"T310_timeout",
"T313 timeout",

Bayfront Technologies CAPE Tods™ Users Manual

"T318 timeout",
"T319 timeout",
"rnet_Alerting",
"rnet_Call Proc”,
"rnet_ConAck",
"rnet_Connect”,
"rnet_DL_Est_Conf",
"rnet_DL_Est_Ind",
"rnet_DL_Rel_Ind",
"rnet_Disc",
"rnet_Info",
"rnet_Notify",
"rnet_Progress',
"rnet_Release”,
"rnet_ReleaseComp",
"rnet_ResumeAck",
"rnet_ResumeRg",
"rnet_SetUp",
"rnet_SetUpAck",
"rnet_Status”,
"rnet_StatusEnquiry”,
"rnet_SuspendAck”,
"rnet_SuspendRej",
"rnet_UnrecognizedMsg",
"ruser_AlertingReq",
"ruser_DiscReq",
"ruser_InfoReq",
"ruser_MorelnfoReq",
"ruser_NotifyReq",
"ruser_ProcReq",
"ruser_ProgesReq",
"ruser_RejReq",
"ruser_ReleaseReq”,
"ruser_RestartReq",
"ruser_Resume",
"ruser_SetUp",
"ruser_SetUpRsp",
"ruser_SuspendReqcallid",
b

Figure 65. State/Event Names File for q.931(q931str)
An example source @de linethat utili zes the state/event namesfileis siown below.

printf("start: State= %s Event=%s\n",
931 StateNameq State], 931 EventNameg Event]);

Appendix A Error Messages

Appendix A Err or Messages

Bayfront CAPEGen Compiler Err or M essages

The eror messges are arranged in alphabetical order.

Action macro: <name> referenced but not defined
The spedfied action macro referenced in by not defined in the action macro
sedion.

ACTION PROTOTYPE FILE EXISTS, cannot create a new one
The CAPEGen Compiler will overwrite an existing action prototype file. You
must either erase the eisting file or rename the eisting action prototype fil e.

Cannot open Action Prototype output file
The CAPEGen Compiler could not open the action prototype file, a system
error.

Cannot open header output file
The CAPEGen Compil er could not create the header outptt file, a system error.

Cannot open Information output file
The CAPEGen Compiler could not create the Information output file, a system
error.

Cannot open SDL output file
The CAPEGen Compil er could not create the SDL outptt file, a system error.

Cannot open State/Event Names output file
The CAPEGen Compiler could not create the state/event names file, a system
error.

Cannot open State/Event Transition output file
The CAPEGen Compil er could not create the header outptt file, a system error.

Cannot open State Transition output file
The CAPEGen Compiler could not create the state transition output file, a
system error.

Duplicate Event Name Found: <name>
A dugdicate event was deteded within the same state. Events within a single
state must be unique.

Duplicate State Name Found: <name>
A dugicate state was deteded in the pdl. State names must be unique.

Duplicate Switch Label deteded: <name>
The spedfied switch label was used in more that one switch action. All switch
labels must be unique to a spedfic switch action.

Event macro: <name> referenced but not defined
The event macro spedfied was referenced by not defined in the event macro
sedion.

Initial State spedfied not defined: <name>
The initial state spedfied with the "Initial State”" reserved word was not found
among the defined states (chedk spelling).

A-1

Bayfront Technologies CAPE Tods™ Users Manual

Internal error: Empty stack popped
Pease notify Bayfront Technologies if this error ocaurs. This error indicates
that the CAPEGen Compil er fail ed reading the PDL file.

Not enough memory, stopped after allocating: x bytes
The PDL file was too large to parse. If you are using the DOS version try to
remove memory resident utiliti es and try again. If you still get the memory
error try either the WINDOWS or Unix CAPEGen Compil er versions.

Number of action/switch passed variables must match: <name>
The number of parameters to an action or a switch action must match for each
occurrence of that action/switch action.

State is unreachable (not called): <name>
The defined state is not reachable from any other state. Chedk the PDL to
make sure that a state transition (>>st at e) to this sate eistsin a least one
other state.

Switch Label count mismatch, Switch: <name>
The number of switch labels were not exactly corred for each occurrence of the
spedfied switch action.

Switch label field not defined: <name>
There is an extra switch label defined that is not included in all of the switch
actions. The number and names of the switch labels must match.

Switch name = action name (not all owed): <name>
Switch names cannot be the same as actions names.

There are noEVENTS defined
You must spedfy at least one event.

Thereare no ACTIONS defined
You must spedfy at least one action.

Undefined State: <name>
The spedfied state was referenced but not defined.

A-2

Appendix A Error Messages

Bayfront CAPEDraw Viewer Err or M essages

CAPEGen Compiler diagram file corr upted
Theinput file appears to be a CAPEGen Compil er diagram file but the internal
structure is not consistent.

Command line option " <option>" unknown (DOSUnix)
The given command line option is not accepted by the CAPEDraw Viewer.
Enter "capedraw” with no command line arguments for a list of the acceptable
options.

Diagram toolarge (DOYS)
The diagram contains more than 4000 boxes. The demonstration version is
limited to 100 boxes. Factor the protocol into more state machines or less
complex states.

Draw input file " <filename>" does not exist
The - d option was Pedfied and the file auld not be found.

Graphics - <graphics hardware problem message>
A problem with initi alizing the graphics hardware has been encountered. "Not
enough memory" problems can be resolved by removing TSRs and drivers from
the lower 640k of memory.

Input file " <filename>" isnot a CAPEDraw Viewer layout file
The - d option was Pedfied and the input file was not produced by a previous
-1 pass (DOS/Unix) or the Conpi | e/ Opti ons/ <speci fic diagram
fi | e>type menu option was not previoudy seleded.

Input file " <filename>" isnot a CAPEGen Compil er diagram file
The -1 option was gpedfied and the input file does not conform to the
structure of a CAPEGen Compil er diagram file.

Layout input file " <filename>" does not exist
The- | option was Pedfied and theinput fil e does not exist.

No input file spedfied
Operations were spedfied but no input file was edfied.

No gperation (spedfy -l or -d or both)
Either layout or drawing or bath must be spedfied for the CAPEDraw Viewer
to take action.

Out of memory
The protocol istoolargeto belaid out or drawn using the avail able lower 640K
of memory. Try the following solutions. Freememory by removing TSRs and
drivers. Factor the protocol into smaller state machines. Use the WINDOWS
version of the CAPEDraw Viewer.

PS and EPSrequire filename w/no extension (e.g., -p:PS:afile)
The etensions of these graphic output files default to. PS and . EPS
respedively. The abovwe eample spedfication would produce the file
afile.PS

Unable to gpen <filename> for output
The spedfied output file @nnot be mnstructed either becuse previous write
proteded version exists or the disk isfull.

Unable toregister font: <fontname>

A-3

Bayfront Technologies CAPE Tods™ Users Manual

There is not enough memory to all ow the use of the given graphics font. Some
memory in the lower 64K isrequired.

Unknown printer " <printer>"
The given printer is no a supported printer. Enter "capedraw” with no
command arguments for a list of the supported printers.

A-4

Appendix B License Agreanent

Appendix B Bayfront Tednologies License Agreement

The agreament on the sealed Bayfront CAPE Tod s diskette package is reproduced below for your
reference

IMPORTANT--READ CAREFULL Y BEFORE USING. By using the enclosed disk(s), you indicate
your acceptance of the following Bayfront Technologies license Agreement.

Bayfront Technologies License Agreement

(single-user products)

Thisisalegal agreement between yau, the end user and Bayfront Techndogies, Inc. By using the enclosed disk(s) you are agreeéngto be
bound bythe terms of thisagreement. If you do nd agreeto the terms of this agreement, promptly return the disk(s) and the accompanying
items (including written materials and kinders or other containers) to Bayfront Techndogies, Inc. for afull refund.

BAYFRONT TECHNOLOGIES SOFTWARE LICENSE

1. GRANT OF LICENSE. Bayfront Techndogies grants you the right to use one mpy d the enclosed Bayfront Techndogies
software program (the "SOFTWARE") onasingeterminal conreded to asinge ammputer (i.e., with asnge CPU). Y ou may na network
the SOFTWARE or otherwise use it on more than ore mmputer or computer terminal at the sametime.

2. COPYRIGHT. The SOFTWARE is owned by Bayfront Techndogies and is proteded by United States copyright laws and
international treaty provisons. Therefore, you must treat the SOFTWARE like any ather copyrighted material (e.g., a bodk or musical
recording) except that you may either (a) make @pies of the SOFTWARE solely for backup o archival purpases, or (b) transfer the
SOFTWARE to asingle hard disk provided you keep the original solely for backup or archival purposes. You may nat copy the written
materials accompanying the software.

3. OTHER RESTRICTIONS. You may na rent or lease the SOFTWARE, but you may transfer the SOFTWARE and
accompanying written materials on a permanent basis provided you retain nocopies and the redpient agrees to the terms of this Agreement.
Y ou may nat reverse enginee, decompil e, or disasemble the SOFTWARE.

4. DUAL MEDIA SOFTWARE. If the SOFTWARE is acquired on bah 3 1/2" and 5 1/4" disks, then you may use only the
disks appropriate for your snge-user computer. Y ou may na use the other disks onanather computer or loan, rent, lease, or transfer them
to another user except as part of the permanent transfer (as provided abowe) of all SOFTWARE and written materials.

5. SAMPLE CODE. If the SOFTWARE includes smple mde, then Bayfront Techndogies grants you a royalty-free right to
reproduceand dstribute the sample ade from the SOFTWARE in oljed code form provided that you: (@) distribute the sample @de only
in conjunction with and as a part of your software product; (b) do nd use Bayfront Techndogies name and/or itslogas, or trademarks to
market your software product; and (c) agreeto indemnify, had harmless and defend Bayfront Techndogies from and againg any claims
or lawsuits, including attorney's fees, that arise or result from the use or distribution d your software product.

DISCLAIMER OF WARRANTY

The software (including ingtructions for itsuse) is provided "asis"' without warranty of any kind. Further, Bayfront Techndogies does nat
warrant, guarantee or make any representations regarding the use, or the results of the use, of the software or written materials concerning
the software in terms of corredness acauracy, reliability, currentness or otherwise. The antire risk asto the results and performance of the
software is assuimed by yal. If the software or written materials are defedive, you, and nd Bayfront Techndogies or its dealers,
digtributors, agents or employees, assime the entire @<t of all necessary servicing, repair, or corredion.

Nether Bayfront Tedhndogies nor anyore dse who tes been invaved in the aeation, production, or delivery of this oftware shall be
liable for any dred, indred, consequential, or incidental damages (including damages for lossof businessprofits, businessinterruption,
lossof businessinformation, and the like) arisng aut of the use or inability to use such software even if Bayfront Techndogies has been
advised of the posshility of such damages. Because some states do nd allow the exclusion a limitations of liability for consequential or
incidental damages, the above li mitation may nat apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

The SOFTWARE and daumentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is
subjed to redtriction as st forth in subparagraph(c)(1)(ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252227-7013 Contractor/manufacturer is Bayfront Techndogies, Inc./1280Bison B9-231/Newport Beach, CA. 92660

This Agreement isgoverned bythe laws of the State of California.

Should yau have any questions concerning this Agreement, or if you wish to contact Bayfront Techndoges, Inc. for any reason, please
write: Bayfront Techndogies, Inc./1280Bison B9-231/Newport Beach, CA. 92660

B-1

Bayfront Technologies CAPE Tods™ Users Manual

B-2

Index

| ndex

A
actbody.txt file, 6-1, 6-2
actfileh.txt file, 6-1, 6-2
acthdr.txt file, 6-1, 6-2
action
dedarations, 4-6
macros, 3-8
prototype file, 2-6, 5-3, 6-1
action routines, 2-6
actions, 1-5, 1-7, 3-6
architedural modd, 1-5
architedure, 1-2

C
CAPE, 1-1
Client/Server moddl, 1-6
protocol layer model, 1-6
Realtime system modd, 1-7
CAPE Tods
header file, 4-7
output files, 1-1
use, 1-1
cape.h, 4-7
CAPEDraw Viewer, 1-7, 2-6, 2-7
escaping, 2-8
layout file (DOS), 2-8
name pattern (DOS), 2-8
options, 2-7
paper size supported (DOS), 2-8
printers supported (DOS), 2-8
CAPEGen Compiler, 2-6, 4-1, 6-1
filenames generated, 2-6
options, 2-6
case sensitivity, 3-2
CaTT
Q.931 potocoal, 2-6
SDL diagrams, 1-1, 1-9, 2-6, 2-7
Client/Server, 1-3
communications g/stems, 1-1

D
debuggng, 2-6
state/event namesfil e, 8-1
static aode path cheding, 5-2
diagram, 1-7
draw, 2-7
draw (DOYS), 2-8
graphicsfiles (DOS), 2-8
layout, 2-7, 2-8
line grouping suppresson, 2-9

orientation on page (DOS), 2-9

page number suppresson (DOS), 2-9

paper size (DOS), 2-8

printing (DOS), 2-8

rotation on page, 2-9

SDL, 1-9

state transition, 1-8

state/event transition, 1-8

title suppressgon (DOS), 2-9
documentation, 2-6, 2-9, 7-1

E
event, 1-3, 1-7, 3-4, 4-3
Event Control Block, 1-7, 4-6, 4-7, 4-8, 5-1
example definition, 5-2
event macros, 3-5
in PDL, 3-5
event processor, 1-3, 1-5, 1-7, 3-4, 4-2, 4-3, 4-
11, 51,52, 54
event indication names, 3-4, 4-3
indicating default
event, 3-5
indicating default message, 3-5
indicating default timeout, 3-5
pseudo code, 5-4
event triggers, 3-4

F

file
actbody.txt, 5-3, 6-1, 6-2
actfil eh.txt, 6-1, 6-2
acthdr.txt, 6-1, 6-2
action function body, 6-2
action function prototypes, 6-2
action prototype, 5-3, 6-1
action prototype header, 6-2
CAPE Tods header, 4-7
cape.h, 4-7
protocol/state machine information, 7-1
sm_execc, 5-1
state machine header, 4-7
state machine table, 4-6
state/event names, 8-1

file extension
.act, 2-6, 5-4, 6-1
.C, 2-6, 4-6
.h, 2-6
.S, 2-6
.sd, 2-7
.sdd, 2-7
sdl, 2-6
.se, 2-6
.Sed, 2-7
.Sir, 2-6, 8-1

Bayfront Technologies CAPE Tods™ Users Manual

xt, 2-6, 7-1 user custom, 3-4
pd, 2-6 event macros, 3-5
event trigger, 3-4
G examples, 2-2
graphics, 2-7 identifiers, 3-2
inafile, 2-7 initial state, 3-3
on printer (DOS), 2-8 numbers, 3-2
on screen (DOS), 2-8 overview, 3-1

reserved words, 3-2
| semantic restrictions, 3-9

initial state, 3-1, 3-3, 4-3 state, 3-3
install ation, 2-1 state transitions, 3-6
DOS, 2-1 syntax, 3-1
Unix, 2-1 syntax example, 3-9
Windows, 2-1 portrait diagram (DOS), 2-9
ISDN, 2-7 PostScript, 2-7, 2-8, 2-9
ISO OSl modd, 1-2 encapsulated, 2-8
postscript, 2-3
L primiti ve routines, 1-7
landscape diagram (DOS), 2-9 primitives, 1-5
layout, 2-7 printer port seledion (DOS), 2-9
files (DOYS), 2-8 printers
li cense agreement, 8-1 paper size (DOS), 2-8
printing dagrams, 2-7
M processcontrol systems, 1-1
machine name, 3-3 protocol
architedure of implementation, 4-2
0] debuggng, 5-2, 8-1
operating system, 1-1, 1-7, 5-4 documentation, 2-7
optimizaion, 4-2 implementation
OSl modd, 1-2 process 4-1
layers, 1-2, 3-1, 5-5
P optimizaion, 4-2
PDL, 3-1 processof implementation, 4-2
action, 3-6 stack, 1-2, 5-1, 5-5
break, 3-6, 3-8 state machine, 3-3
macros, 3-8 state tables, 1-5, 1-7
restart timer, 3-7 Protocol Definition Language, 3-1
send message, 3-6
start timer, 3-7 Q
state transition, 3-6 Q.931 potocoal, 2-6
stop al timers, 3-7
stop timer, 3-7 R
switch, 3-7 realtime system
switch return values, 4-5 architedures, 1-5
timerrunning, 3-7 realtime systems, 1-1
user routine, 3-7 reserved words, 3-1, 3-2
case sensitivity, 3-2 restart timer, 3-7
comments, 3-1 rotated dagram, 2-9
event, 3-4
message recaved, explicit, 3-4 S
timer expire SDL, 1-8
default, 3-5 diagram, 1-9, 2-6
explicit, 3-5 simulation, 5-3

Index

sm_execc, 5-1
Spedfication and Description Language, SDL,
1-8
start timer, 3-7
date, 3-3
header file onstant, 4-3
initial state, 4-3
number of inaPDL, 4-3
state machine
header file, 4-3, 4-7
state machine eeautor, 1-5, 1-7, 3-4, 4-2, 5-1,
54
return codes, 5-2
state machine tablefil e, 4-6
state machines, 1-3
state transition diagram, 1-8, 2-6
state trangitions, 3-6
state/event diagram, 1-8, 2-6
stop al timers, 3-7
streams, 5-4
syntax diagrams, 3-1

T
timer

restart, 3-7

stop, 3-7

stop all, 3-7
timerrunning, 3-7
triggers, 3-4

U
Unix graphics, 2-2
user suppied definition
Event Control Block, 5-1
example, 5-2
user suppied routines
action return value, 4-6
action routine
interface 4-6
parameters, 4-7
prototypes, 6-1
actions, 4-2
custom action, 3-7
event indication names, 3-4, 4-3
event processor, 4-2, 4-11, 5-1, 5-2
calling sm_exeg 5-1
pseudo code, 5-4
primitive, 4-2
referring to state names, 4-3
referring to timers, 4-4, 4-8
restarttimer, 3-7
starttimer, 3-7, 4-4, 4-8
stopalltimers, 3-7, 4-4, 4-8
stoptimer, 3-7, 4-4, 4-8

switch action return values, 4-5
timerrunning, 3-7, 4-4, 4-8

view menu, 2-5

Windows

Client/Server, 1-3
NT, 1-3

